

OSI Network Layer

Network Fundamentals – Chapter 5

Version 4.0

© 2007 Cisco Systems, Inc. All rights reserved.

1

Network Layer Protocols and Internet Protocol (IP)

Network Layer Protocols & Internet Protocol (IP):

TCP/IP

IP Packets flow through the internetwork.

- Connectionless No connection is established before sending data packets.
- Best Effort (unreliable) No overhead is used to guarantee packet delivery.
- Media Independent Operates independently of the medium carrying the data.

Network Layer Protocols and Internet Protocol (IP)

Connectionless Communication

Network Layer Protocol Implications

Best Effort

As an unreliable Network layer protocol, IP does not guarantee that all sent packets will be received.

Other protocols manage the process of tracking packets and ensuring their delivery.

Network Layer Protocol is Media Independent

Media Independence

IP packets can travel over different media.

Network Layer Protocol Encapsulation

Generating IP Packets

Transport Layer Encapsulation

Segment Header	Data
-------------------	------

Network Layer Encapsulation

In TCP/IP based networks, the Network layer PDU is the IP packet.

cisco.

Internet Protocol (IP) Packet Header

IPv4 Packet Header Fields

IP Addressing Groups Nodes into "Subnets"

Grouping Devices into Networks with Hierarchical Addressing

Replacing the middle switch with a router creates 2 IP subnets, hence, 2 distinct broadcast domains. All devices are connected but local broadcasts are contained.

Dividing Large Networks is a Security Strategy

Hierarchical Addressing

Hierarchical Addressing

TO: Jane Doe 170 West Tasman Drive, San Jose, CA 95134, USA

At each step of delivery, the post office need only examine the next hierarchical level.

Subnet Address Structure:

Hierarchical IPv4 Address

© 2007 Cisco Systems, Inc. All rights reserved.

Routers "route" based on Next Hop Addresses

Gateways Enable Communications between Networks

Route Tables:

- 1. Directly Connected Networks
- 2. Static Routes
- 3. Routes Learned via Routing Protocol

Let's Review Binary Math!

Bit Value by Position:

8 Bits = 1 Byte or "octet"

Lets' Review v4 IP Addresses:

- 32 bit address
- 4 octets (or bytes)
- "dotted decimal" format

Cisco Networking Academy

IP Address is part of a "Class":

	128	64	32	16	8	4	2	1		128	64	32	16	8	4	2	1
							0								126		
Class A	0	0	0	0	0	0	0	0	•	0	1	1	1	1	1	1	0
Class B		1					12	28						191			
	1	0	0	0	0	0	0	0	•	1	0	1	1	1	1	1	1
Class C		192											223				
	1	1	0	0	0	0	0	0	•	1	1	0	1	1	1	1	1
The Rest	224										254						
	1	1	1	0	0	0	0	0	•	1	1	1	1	1	1	1	0

All IP Addresses have two components:

✓The Network Address (to the left)

✓ The Host ID (to the right)

Combination is a unique address

	128 64 32 32 8 8 4 2 2 1	128 64 32 32 8 8 4 2 2 1	128 64 32 32 16 8 8 4 4 2 2	128 64 32 16 8 8 4 2 1
IP	192	. 168	. 155	. 224
Address:	11000000	.10101000	.10011011	.11100000
	128 64 32 32 16 8 8 4 2 2	128 64 32 32 8 8 4 2 2	128 64 32 32 16 8 8 4 2 2 1	128 64 32 32 16 8 8 4 2 2
Maak	255	. 255	. 255	. 0
IVIdSK:	111111111	.111111111	.11111111	.00000000

Networking Academy

CISCO

Default Subnet Mask

cisco.

	128 64 32 16 8	1 2	128 64 32 16 8	7 7 7	128 64 32 32 16 8 8 4 4 2 1	128 64 32 32 16 8 8 4 4 2 1
		255		0	. 0	. 0
Class A	11111	111	00000	000	.00000000	00000000
		255		255	. 0	. 0
Class B	11111	111	11111	.111	.00000000	00000000
Class C		255		255	. 255	. 0
	11111	111	11111	.111	.11111111	00000000

- A = 126 Networks, 16,777,214 hosts
- B = > 16,000 Networks, 65,534 hosts
- C = > 2,000,000 Networks, 254 hosts

A "Network" is a range of addresses:

Example: 192.168.101.0 to 192.168.101.255

 \checkmark The first number in the range (host = all zero) is the Network Number = 192.168.101.0

✓ The last number in the range (host = all ones) is the broadcast address = 192.168.101.255

✓The middle of the range can be used for identifying individual hosts.

Cisco Networking Academy

Subnet Mask:

A subnet mask is used to identify the Network ID portion of the address range:

- ✓ A = 255.0.0.0
- ✓ B = 255.255.0.0
- ✓ C = 255.255.255.0

Three methods of identifying the Subnet Mask:

- ✓ Default Subnet Mask
- ✓ Subnet Mask for the Enterprise
- ✓ CIDR /number notation

We extract the Network ID using a binary logical "trick" ... the "and logic".

#