

Addressing the Network – IPv4

Network Fundamentals – Chapter 6

Version 4.0

© 2007 Cisco Systems, Inc. All rights reserved.

1

ululu cisco.

Cisco Networking Academy

Objectives

- Explain the structure IP addressing and demonstrate the ability to convert between 8-bit binary and decimal numbers.
- Given an IPv4 address, classify by type and describe how it is used in the network.
- Explain how addresses are assigned to networks by ISPs and within networks by administrators.
- Determine the network portion of the host address and explain the role of the subnet mask in dividing networks.
- Given IPv4 addressing information and design criteria, calculate the appropriate addressing components.
- Use common testing utilities to verify and test network connectivity and operational status of the IP protocol stack on a host.

cisco.

 Describe the dotted decimal structure of a binary IP address and label its parts

Internet Protocol (TCP/IP) Properties	I see you have	
General	assigned me	
You can get IP settings assigned automatically if your network supports	an IP address	
this capability. Otherwise, you need to ask your network administrator for	11000000.1010	
the appropriate IP settings.	1000.00000001.	
C Obtain an IP address automatically	00000101	\geq
• Use the following IP address:	Now other	
IP address: 192.168.1.5	hosts can find	\sim
Subnet mask:	me!	r i
Default gateway:		\sim
Obtain DNS server address automatically Ostain DNS server addresses:		
Preferred DNS server:		
Alternate DNS server:		L
Advanced		Ę
OK Cancel	-	•

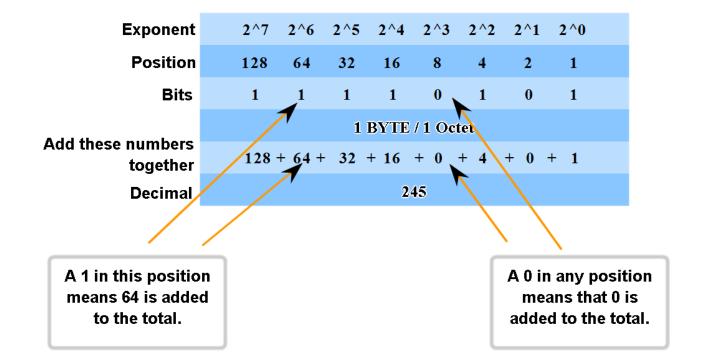
IP version 4 (IPv4) is the current form of addressing used on the Internet.

 Describe the general role of 8-bit binary in network addressing and convert 8-bit binary to decimal

IPv4 Addresses

192	168	10	1
11000000	10101000	00001010	0000001

The computer using this IP address is on network 192.168.10.0.



Roll over a label to see the parts of an IP address.

cisco.

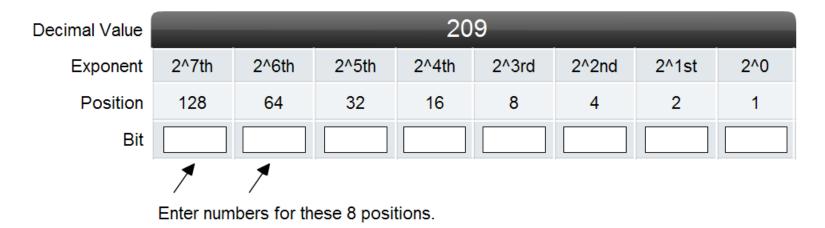
Practice converting 8-bit binary to decimal

Binary To Decimal Conversion

11110101 in Binary = Decimal Number 245

Convert decimal to 8-bit binary

cisco.

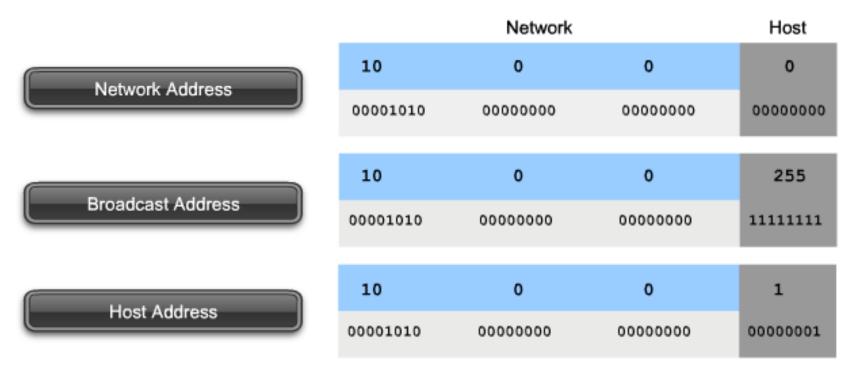

Decimal to Binary Conversion Steps 172>=128? -No 10000000 Yes put 1 in position 128 172-128=44 44>=32? -44>=64? No No Yes Yes 10100000 put 1 in position 32 44-32=12 12>=16 12>=8? No No Yes Yes 10101000 put 1 in position 8 12-8=4 4>=4? No Convert Yes 10101100 put 1 in position 4 decimal 172 to binary 10101100 4-4=0

STOP

Practice converting decimal to 8-bit binary

Decimal to Binary Conversion Activity

Given a decimal value, enter the correct binary values for each positon.



Networking Academy

JISCO

cisco.

 Name the three types of addresses in the network and describe the purpose of each type

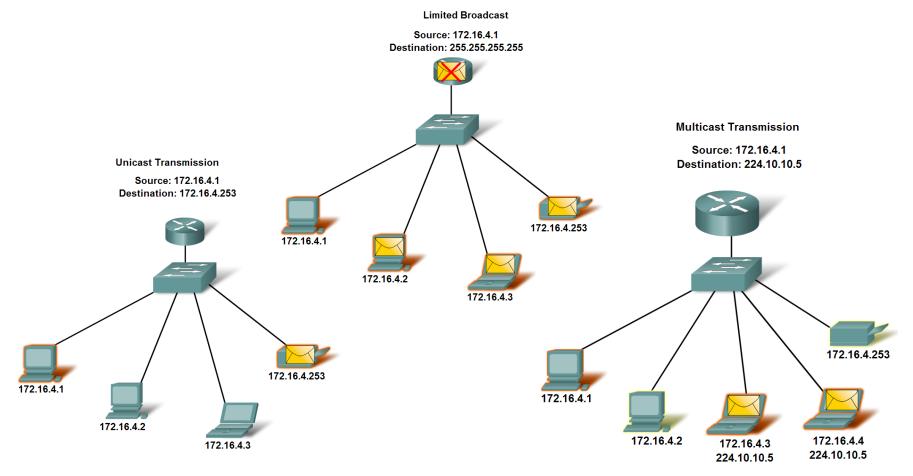
Address Types

 Determine the network, broadcast and host addresses for a given address and prefix combination

Given address/prefix of 144.83.250.97 /17

11 111 11

CISCO.


For each row, enter the values for that type of address.

	Type of Address	Enter LAST octet in binary	Enter LAST octet in decimal	Enter full address in decimal
→	Network	0000000	0	144.83.128.0
→	Broadcast	11111111	255	144.83.255.255
→	First Usable Host Address	00000001	1	144.83.128.1
↦	Last Usable Host Address	1111110	254	144.83.255.254

Networking Academy

cisco.

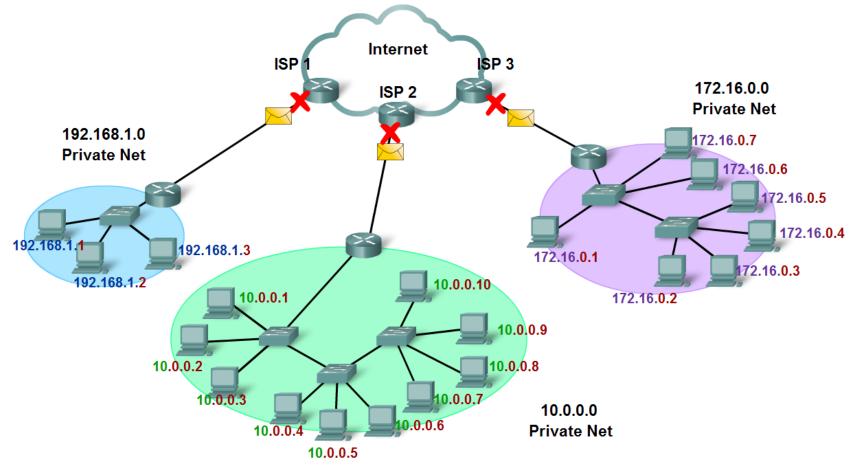
 Name the three types of communication in the Network Layer and describe the characteristics of each type

© 2007 Cisco Systems, Inc. All rights reserved.

Networking Academy

Cisco

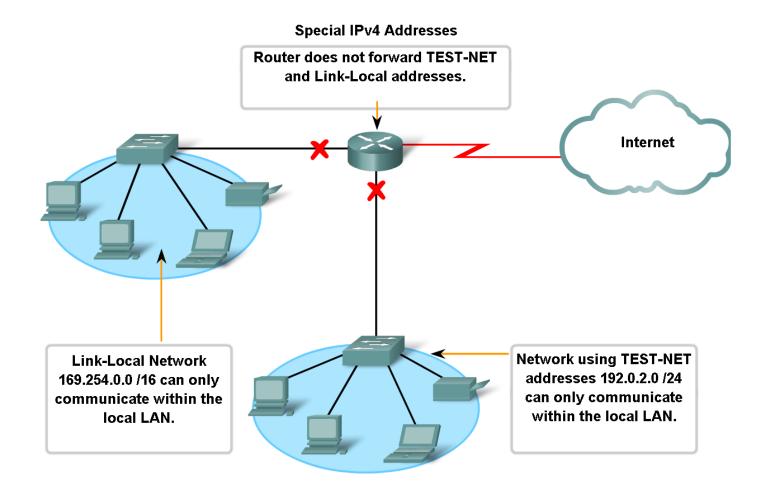
Identify the address ranges reserved for these special purposes in the IPv4 protocol


Reserved IPv4 Address Ranges

Type of Address	Usage	Reserved IPv4 Address Range	RFC
Host Address	used for IPv4 hosts	0.0.0.0 to 223.255.255.255	790
Multicast Addresses	used for multicast groups on a local network	224.0.0.0 to 239.255.255.255	1700
Experimental Addresses	 used for research or experimentation cannot currently be used for hosts in IPv4 networks 	240.0.0.0 to 255.255.255.254	1700 3330

Define public address and private address

cisco.


Private Addresses used in Networks without NAT

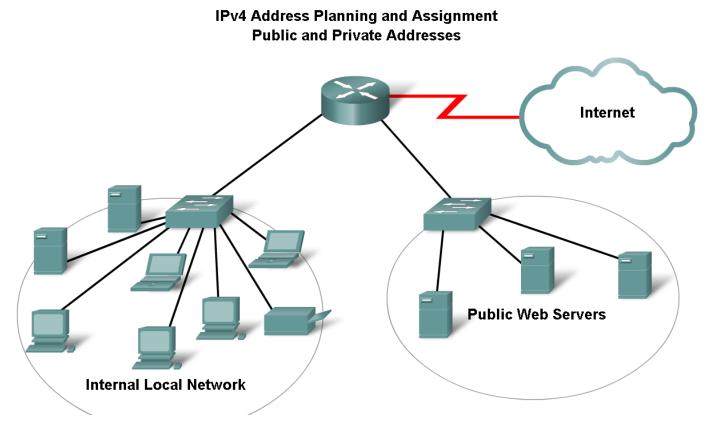
ahaha

CISCO.

Describe the purpose of several special addresses

cisco.

 Identify the historic method for assigning addresses and the issues associated with the method


Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	0000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	1000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	1110 0000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

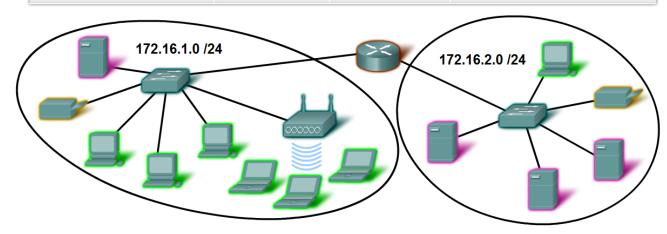
IP Address Classes

** All zeros (0) and all ones (1) are invalid hosts addresses.

 Explain the importance of using a structured process to assign IP addresses to hosts and the implications for choosing private vs. public addresses

 Explain how end user devices can obtain addresses either statically through an administrator or dynamically through DHCP

Assigning Dynamic Addresses

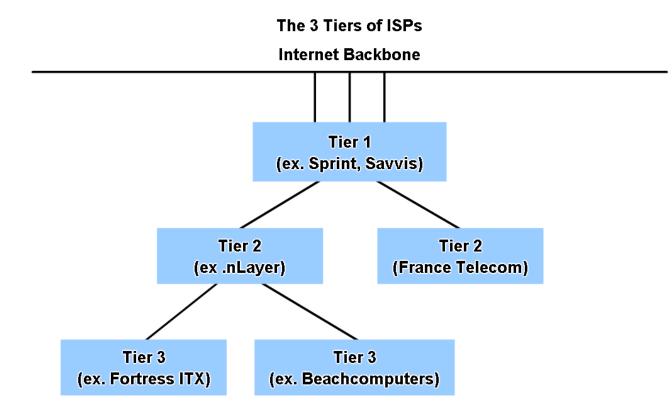

Internet Protocol (TCP/IP) Properties	x) 65 Command Prompt
General	C:>>ipconfig /all
Vou can get IP settings assigned automatically if your network supports this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings.	<pre>Vindows IP Configuration Host Name Host-1 Primary Dns Suffix Hybrid IP Routing Enabled</pre>
IP Address Subnet mask Default gateway DHCP server	65.24.7.6 Lease Obtained

Networking Academy

 Explain which types of addresses should be assigned to devices other than end user devices

Use	First Address	Last Address	Summary Address
Network Address	172.16.x.0		172.16.x.0 /25
User hosts (DHCP pool)	172.16.x.1	172.16.x.127	172.10.8.0725
Servers	172.16.x.128	172.16.x.191	172.16.x.128 /26
Peripherals	172.16.x.192	172.16.x.223	172.16.x.192 /27
Networking devices	172.16.x.224	172.16.x.253	
Router (gateway)	172.16.x.254		172.16.x.224 /27
Broadcast	172.16.x.255		

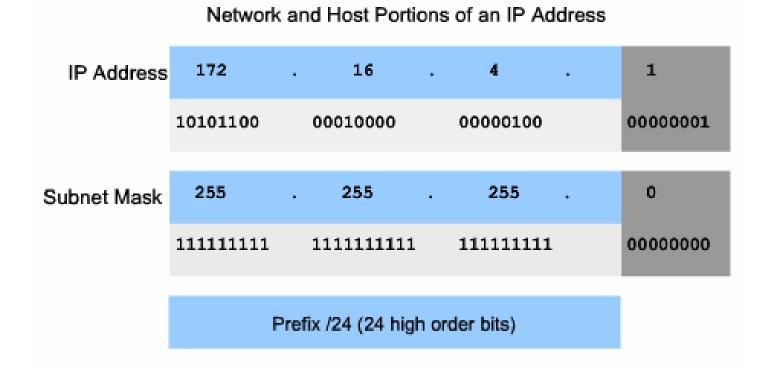
Devices IP Address Ranges


 Describe the process for requesting IPv4 public addresses, the role ISPs play in the process, and the role of the regional agencies that manage IP address registries

Entities that Oversee IP Address Allocation

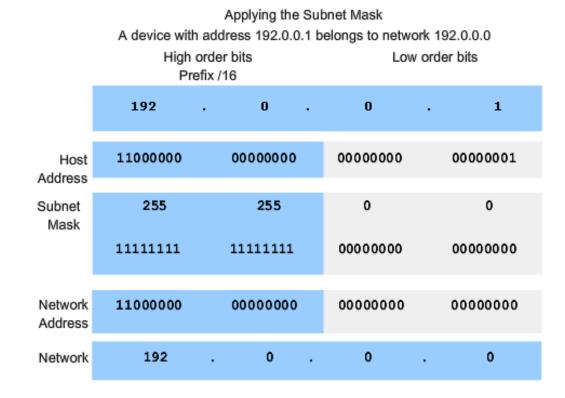
Global			IANA		
Regional Internet	AfriNIC Africa	APNIC Asia/	LACNIC Latin	ARIN North	RIPE NCC Europe,
Registries	Region	Pacific Region	America And Caribbean Region	America Region	Middle East, Central Asia Region

Identify different types of ISPs and their roles in providing Internet connectivity

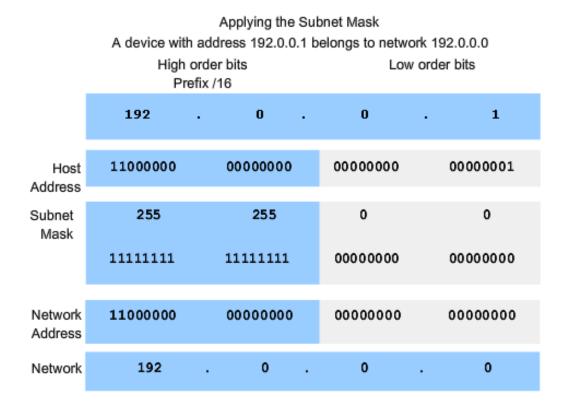

 Identify several changes made to the IP protocol in IPv6 and describe the motivation for migrating from IPv4 to IPv6

IPv6 Header

Version 6	Traff	Traffic Class 8 bits		w Label 20 bits	
Payload Ler	ngth 16 bit	s Next Hdr 8	8 bits	HopLimit 8 bits	
Зf	fe:6a88:8	5a3:08d3:1319:	8a2e:03	370:7344	Source Address
20	01:0db8:0	000:0000:0000:	0000:14	28:57ab	Destination Address

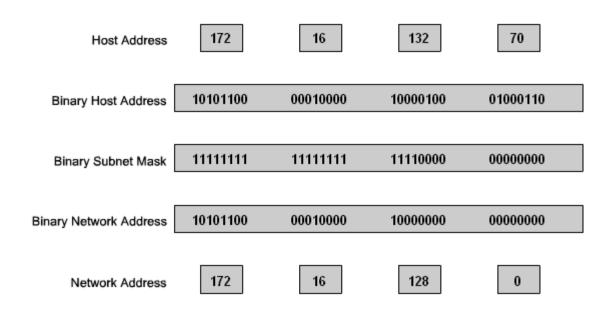

cisco.

 Describe how the subnet mask is used to create and specify the network and host portions of an IP address


 Use the subnet mask and ANDing process to extract the network address from the IP address

cisco.

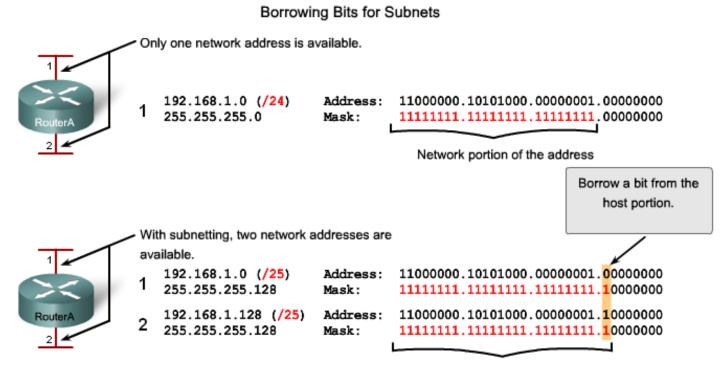
Use ANDing logic to determine an outcome


cisco.

 Observe the steps in the ANDing of an IPv4 host address and subnet mask

cisco.

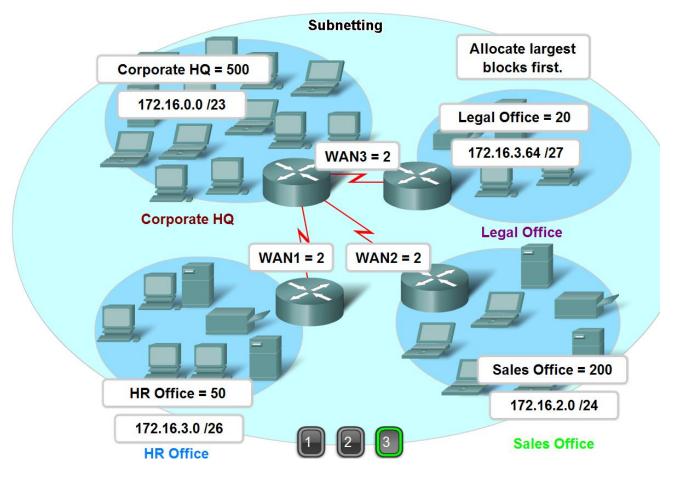
Using the subnet mask to determine the network address for host 172.16.132.70/20



Convert binary network address to decimal

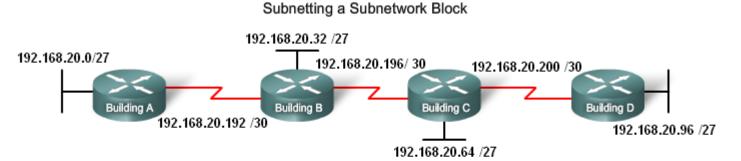
Calculating Addresses

 Use the subnet mask to divide a network into smaller networks and describe the implications of dividing networks for network planners


Increase the network portion of the address

Networking Academy

Calculating Addresses


 Extract network addresses from host addresses using the subnet mask

ululu cisco.

Calculating Addresses

Calculate the number of hosts in a network range given an address and subnet mask

Subnet Number	Subnet Address
Subnet 0	192.168.20.0/27
Subnet 1	192.168.20.32/27
Subnet 2	192.168.20.64/27
Subnet 3	192.168.20.96/27
Subnet 4	192.168.20.128/27
Subnet 5	192.168.20.160/27
Subnet 6	192.168.20.192/27
Subnet 7	192.168.20.224/27

Subnet Number	Subnet Address
Subnet 0	192.168.20.192/30
Subnet 1	192.168.20.196/30
Submet 2	192.168.20.200/30
Subnet 3	192.168.20.204/30
Subnet 4	192.168.20.208/30
Subnet 5	192.168.20.212/30
Subnet 6	192.168.20.216/30
Submet 7	192.168.20.220/30

Calculating Addresses

 Given a subnet address and subnet mask, calculate the network address, host addresses and broadcast address
 Activity

Given the host IP address and the subnet mask, enter the network address in binary and decimal.

			_	
Host Address	10	148	100	54
Subnet Mask	255	255	255	240
Host Address in binary	00001010	10010100	01100100	00110110
Subnet Mask in binary	11111111	11111111	11111111	11110000
Network Address in binary				
Network Address in decimal				

uluilu cisco.

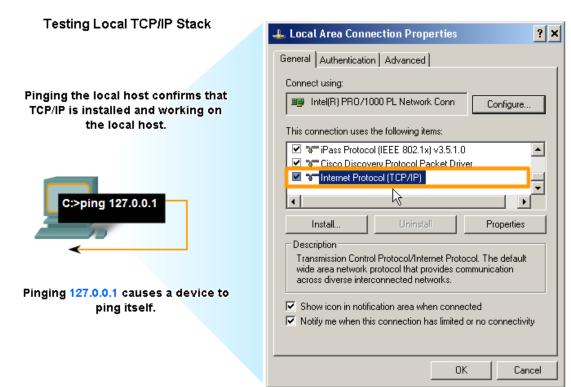
Calculating Addresses

Given a pool of addresses and masks, assign a host parameter with address, mask and gateway

Given the network address and the subnet mask, enter the number of possible hosts. Click next to Number of Hosts to enter your response.

	_	_	_	
Network Address	10	0	0	0
Subnet Mask	255	255	254	0
Network address in binary	00001010	00000000	00000000	00000000
Subnet Mask in binary	11111111	11111111	11111110	00000000
Number of hosts				

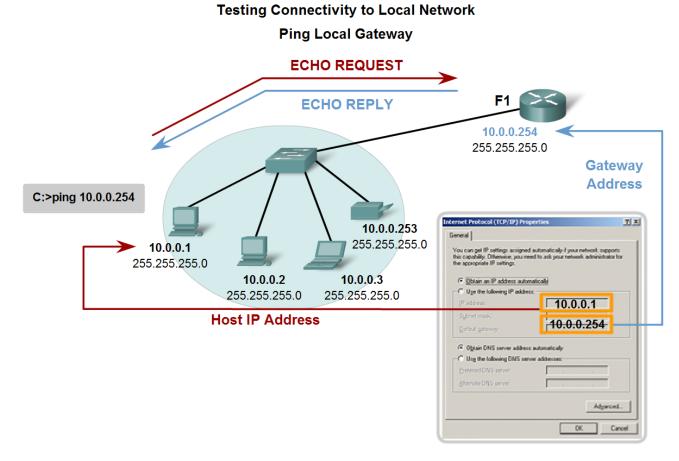
Networking Academy

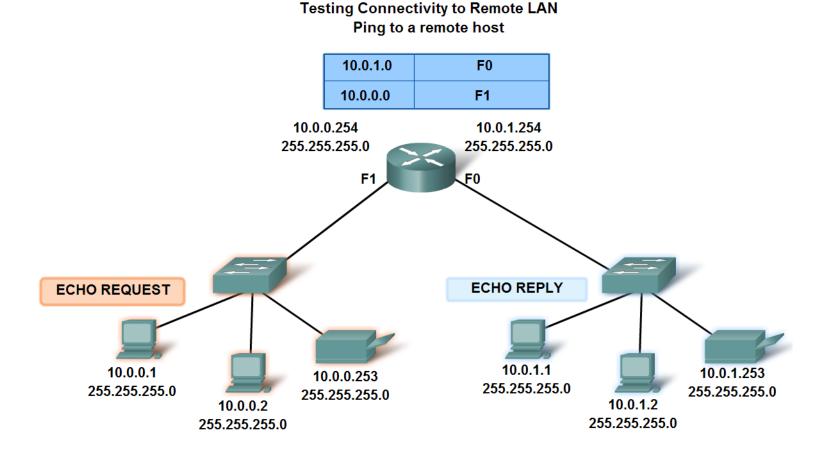

Calculating Addresses

 Given a diagram of a multi-layered network, address range, number of hosts in each network and the ranges for each network, create a network scheme that assigns addressing ranges to each network

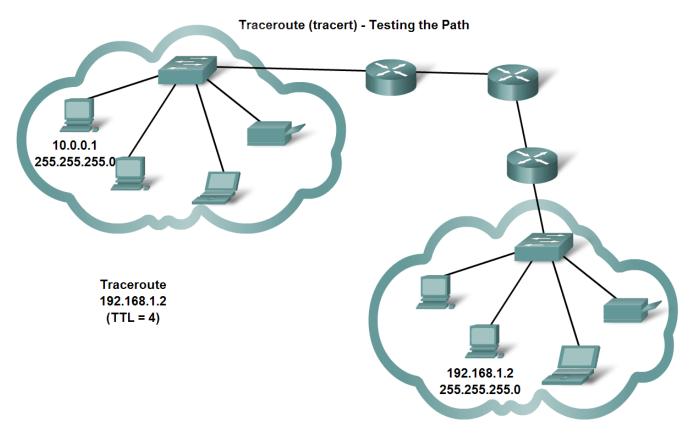
Given the network address and the subnet mask, define the range of hosts, the broadcast address, and the next network address.

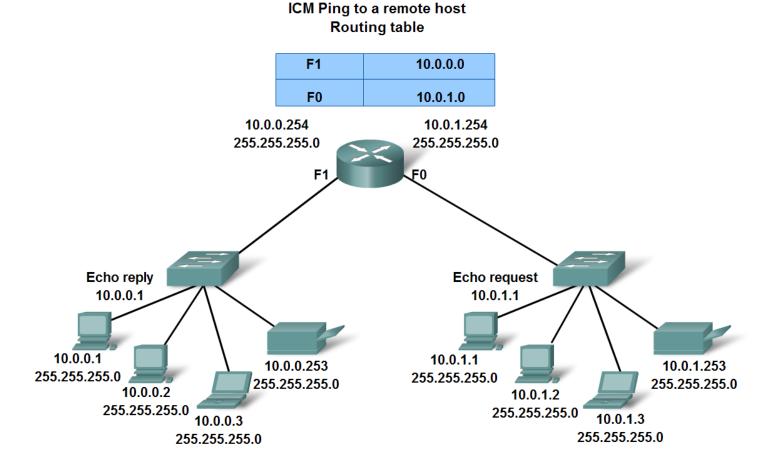
	_	_	_	
Network Address in decimal	10	187	0	0
Subnet Mask in decimal	255	255	224	0
Network address in binary	00001010	10111011	00000000	00000000
Subnet Mask in binary	11111111	11111111	11100000	00000000
First Usable Host IP Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Last Usable Host IP Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Broadcast Address in decimal	1st octet	2nd octet	3rd octet	4th octet
Next Network Address in decimal	1st octet	2nd octet	3rd octet	4th octet


 Describe the general purpose of the ping command, trace the steps of its operation in a network, and use the ping command to determine if the IP protocol is operational on a local host


uluilu cisco.

Testing the Network Layer


Use ping to verify that a local host can communicate with a gateway across a local area network


Use ping to verify that a local host can communicate via a gateway to a device in remote network

 Use tracert/traceroute to observe the path between two devices as they communicate and trace the steps of tracert/traceroute's operation

Describe the role of ICMP in the TCP/IP suite and its impact on the IP protocol

Summary

In this chapter, you learned to:

- Explain the structure IP addressing and demonstrate the ability to convert between 8-bit binary and decimal numbers.
- Given an IPv4 address, classify by type and describe how it is used in the network.
- Explain how addresses are assigned to networks by ISPs and within networks by administrators.
- Determine the network portion of the host address and explain the role of the subnet mask in dividing networks.
- Given IPv4 addressing information and design criteria, calculate the appropriate addressing components.
- Use common testing utilities to verify and test network connectivity and operational status of the IP protocol stack on a host.

#