Sumário

Introdução	5
Resistores	6
Características dos resistores Resistência ôhmica Percentual de tolerância	6 6 7
Simbologia	8
Tipos de resistores Resistor de filme de carbono (baixa potência) Resistores de carvão (média potência) Resistores de fio (média - alta potência)	9 9 10 11
Código de cores para resistores	12
Interpretação do código	12
Resistores de 1 Ω a 10 Ω	15
Resistores abaixo de 1 Ω	15
Resistores de 5 anéis	16
Apêndice	17
Questionário	17
Bibliografia	17

Espaço SENAI

Missão do Sistema SENAI

Contribuir para o fortalecimento da indústria e o desenvolvimento pleno e sustentável do País, promovendo a educação para o trabalho e a cidadania, a assistência técnica e tecnológica, a produção e disseminação de informação e a adequação, geração e difusão de tecnologia.

O cliente é a razão do nosso trabalho, a fim de inseri-lo em um novo contexto social de competitividade e empregabilidade.

Introdução

Os resistores são os componentes mais utilizados na maioria dos circuitos eletrônicos. Dificilmente se encontrará um equipamento eletrônico que não utilize resistores.

Este fascículo, que tratará dos resistores e código de cores, foi elaborado para capacitá-lo a identificar características elétricas e construtivas dos resistores, bem como interpretar valores de resistência expressos por código de cores.

Estude-o atentamente, pois as informações apresentadas serão utilizadas no dia a dia do aprendizado de eletrônica básica.

Para ter sucesso no desenvolvimento do conteúdo deste fascículo, o leitor já deverá ter conhecimentos relativos a:

• Corrente e resistência elétrica.

Resistores

Os resistores são componentes utilizados nos circuitos com a finalidade de limitar a corrente elétrica. A **Fig.1** mostra alguns resistores.

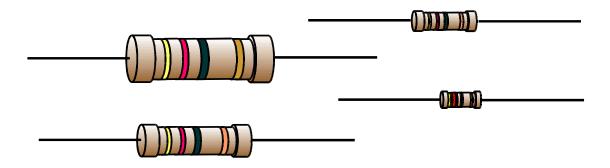


Fig.1 Resistores.

Pelo controle da corrente é possível reduzir ou dividir tensões.

CARACTERÍSTICAS DOS RESISTORES

Os resistores possuem características elétricas importantes. São elas:

- Resistência ôhmica.
- Percentual de tolerância.

RESISTÊNCIA ÔHMICA

É o valor específico de resistência do componente. Os resistores são fabricados em valores padronizados, estabelecidos por norma. Por exemplo: 120Ω , 560Ω , 1500Ω .

PERCENTUAL DE TOLERÂNCIA

Os resistores estão sujeitos a diferenças no seu valor que decorrem do processo de fabricação. Essas diferenças se situam em 5 faixas de percentual:

20% de tolerância
10% de tolerância
5% de tolerância
2% de tolerância
1% de tolerância

Os resistores com 20%, 10% e 5% de tolerância são considerados resistores comuns e os de 2% e 1% são resistores de precisão. Os resistores de precisão são usados apenas em circuitos onde os valores de resistência são críticos. O percentual de tolerância indica qual a variação de valor que o componente pode apresentar em relação ao valor padronizado. A diferença no valor pode ser para mais ou para menos do valor correto.

A **Tabela 1** apresenta alguns valores de resistores com o percentual de tolerância e os limites entre os quais deve situar-se o valor real do componente.

10001011 + 01011001 00 018001001					
Valor nominal	Tolerância (%)	Valor real			
1.000Ω	10%	-10%	Min.	$1.000 \times 0.9 = 900$	
		+10%	Max.	$1.000 \times 1,1 = 1.100$	
560Ω	5%	-5%	Min.	$560 \times 0.95 = 532$	
		+5%	Max.	560 x 1,05 = 588	
120Ω	1%	-1%	Min.	$120 \times 0.99 = 118.8$	
		+1%	Max.	120 x 1,01 = 121,2	

Tabela 1 Valor real de alguns resistores.

A **Tabela 2** apresenta a padronização de valores para fabricação de resistores em tolerância de 5%.

Tabela 2 Série de valores E-24.

10	11	12	13	15	16	18	20	22	24	27	30
33	36	39	43	47	51	56	62	68	75	82	91

Encontram-se ainda resistores com os valores da **Tabela 2** multiplicados por 0,1 (por exemplo 1,1 Ω), 10 (por exemplo 180 Ω), 100 (por exemplo 2.700 Ω), 1.000 (por exemplo 36k Ω), 10.000 (por exemplo 560k Ω) e 100.000 (por exemplo 9,1M Ω). Deste modo, os valores padronizados acrescidos das tolerâncias permitem que se obtenha qualquer valor de resistência desejada.

A **Tabela 3** mostra, por exemplo, os valores de resistores que podem ser encontrados quando se tomam apenas 3 valores consecutivos e alternados da **Tabela 2** (10, 12 e 15):

Valor nominal	Tolerância	Valores possíveis
100Ω	10%	90Ω a 110Ω
120Ω	10%	108Ω a 132Ω
150Ω	10%	135Ω a 165Ω

Tabela 3 Valores possíveis de resistores não padronizados.

SIMBOLOGIA

A **Fig.2** mostra os símbolos utilizados para representação dos resistores, sendo um deles o símbolo oficial que deve ser utilizado no Brasil, segundo a norma ABNT.



Fig.2 Símbolos utilizados para representar um resistor.

Nos diagramas, o valor do resistor aparece ao lado do símbolo ou no seu interior, como mostrado na **Fig.3**.

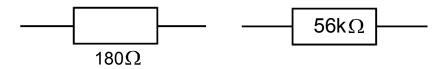


Fig.3 Indicação do valor do resistor.

TIPOS DE RESISTORES

Existem três tipos de resistores quanto à constituição:

- Resistores de filme de carbono.
- Resistores de carvão
- Resistores de fio.

Cada um dos tipos tem, de acordo com sua constituição, características que o tornam mais adequados que os outros tipos em sua classe de aplicação. A seguir, são apresentados os processos básicos de fabricação e a aplicação do componente.

RESISTOR DE FILME DE CARBONO (BAIXA POTÊNCIA)

O resistor de filme de carbono, também conhecido como resistor de película, é constituído por um corpo cilíndrico de cerâmica que serve de base para a fabricação do componente, conforme ilustrado na **Fig.4**.

Fig.4 Cilindro de cerâmica usado na confecção de resistores de película.

Sobre o corpo é depositada uma fina camada em espiral de material resistivo (filme de carbono) que determina o valor ôhmico do resistor, como mostrado na **Fig.5**.

Fig.5 Filme de carbono em espiral.

Os terminais (lides de conexão) são colocados nas extremidades do corpo em contato com a camada de carbono.

Os terminais possibilitam a ligação do elemento ao circuito, conforme ilustrado na **Fig.6**.

Fig.6 Fixação dos terminais do resistor.

O corpo do resistor pronto recebe um revestimento que dá acabamento na fabricação e isola o filme de carbono da ação da umidade.

A **Fig.7** mostra um resistor pronto, em corte, aparecendo a conexão dos terminais e o filme resistivo.

Fig.7 Representação de um resistor em corte.

As características fundamentais do resistor de filme de carbono são a precisão e a estabilidade do valor resistivo.

RESISTORES DE CARVÃO (MÉDIA POTÊNCIA)

O resistor de carvão é constituído por um corpo cilíndrico de porcelana. No interior da porcelana são comprimidas partículas de carvão que definem a resistência do componente, como mostrado na **Fig.8**.

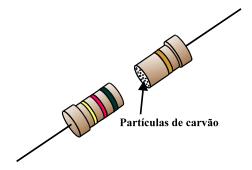


Fig.8 Resistor de carvão.

Com maior concentração de partículas de carvão, o valor resistivo do componente é reduzido. Apresentam tamanho físico reduzido e os valores de dissipação e resistência não são precisos. Podem ser usados em qualquer tipo de circuito.

RESISTORES DE FIO (MÉDIA - ALTA POTÊNCIA)

Constitui-se de um corpo de porcelana ou cerâmica que serve como base. Sobre o corpo é enrolado um fio especial (por exemplo, níquel-cromo) cujo comprimento e seção determinam o valor do resistor.

A **Fig.9** apresenta um resistor de fio em corte. Nela aparecem os terminais, o fio enrolado e a camada externa de proteção do resistor.

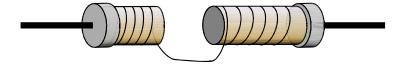


Fig.9 Resistor de fio.

O resistor de fio tem capacidade para trabalhar com maior valor de corrente. Este tipo de resistor produz normalmente uma grande quantidade de calor quando em funcionamento.

Para facilitar o resfriamento dos resistores que dissipam grandes quantidades de calor, o corpo de porcelana maciço é substituído por um tubo de porcelana, como pode ser visto na **Fig.10**.

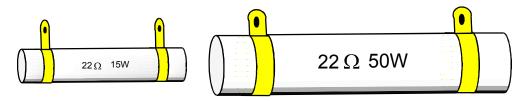


Fig.10 Resistores que dissipam muito calor.

Resistores que dissipam grande quantidade de calor são construídos sobre um tubo oco de porcelana para facilitar o resfriamento.

Código de cores para resistores

O valor ôhmico dos resistores e sua tolerância são impressos no corpo do componente através de anéis coloridos, conforme ilustrado na **Fig.11**.

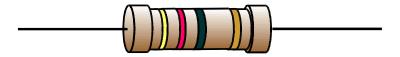


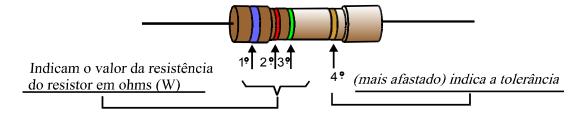
Fig.11 Anéis coloridos que indicam o valor ôhmico do resistor.

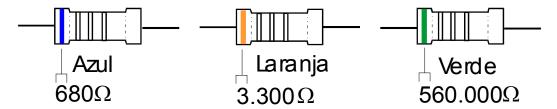
A disposição das cores em forma de anéis possibilita que o valor do componente possa ser lido de qualquer posição.

INTERPRETAÇÃO DO CÓDIGO

O código se compõe de três cores usadas para representar o valor ôhmico, e uma para representar o percentual de tolerância. Para a interpretação correta dos valores de resistência e tolerância do resistor, os anéis têm que ser lidos em uma sequência correta.

O primeiro anel colorido a ser lido é aquele que está mais próximo da extremidade do componente. Seguem na ordem o 2.º, o 3.º e o 4.º anéis coloridos, conforme mostrado na **Fig.12**.




Fig.12 Posição e significado dos anéis coloridos.

Série de Eletrônica

SENAI

Os três primeiros anéis coloridos (1.º, 2.º e 3.º) representam o valor do resistor. O 4.º anel representa o percentual de tolerância.

O primeiro anel colorido representa o primeiro número que formará o valor do resistor, como ilustrado na **Fig.13**.

Fig.13 Primeiro anel indicando o primeiro algarismo do valor do resistor.

A cada número corresponde uma cor, como mostra a Tabela 4.

Tabela 4 Código de cores para resistores.

Preto	Marrom	Vermelho	Laranja	Amarelo	Verde	Azul	Violeta	Cinza	Branco
0	1	2	3	4	5	6	7	8	9

O segundo anel colorido representa o segundo número que forma o valor do resistor, como pode ser visto na **Fig.14**.

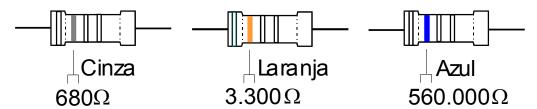


Fig.14 Segundo anel indicando o segundo algarismo do valor do resistor.

Para o segundo anel, as cores têm o mesmo significado do primeiro anel.

O terceiro anel representa o número de zeros que segue aos dois primeiros algarismos, sendo chamado de fator multiplicativo. A **Fig.15** mostra três exemplos.

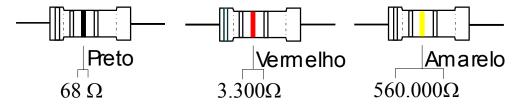


Fig.15 Terceiro anel indicando o fator multiplicador.

A cada número de zeros corresponde uma cor, como mostra a **Tabela 5**.

Tabela 5 Código de cores dos multiplicadores.

Preto	Marrom	Vermelho	Laranja	Amarelo	Verde	Azul
Nenhum zero	1 zero	2 zeros	3 zeros	4 zeros	5 zeros	6 zeros

🛂 As cores violeta, cinza e branco não são encontradas no 3.º anel por que os resistores padronizados não alcançam valores que necessitem de 7, 8 ou 9 zeros.

Os resistores usados como exemplo estão representados na Fig.16.

Fig.16 Resistores de 680Ω , 3.300Ω e 560.000Ω com código de cores.

O quarto anel colorido representa a tolerância do resistor. A cada percentual corresponde uma cor característica, como pode ser visto na Tabela 6.

Tabela 6 Código de cores relativo a tolerância.

Prateado	Dourado	Vermelho	Marrom
± 10%	+ 5%	+ 2%	± 1%
1070	⊥ 370	<u> </u>	⊥ 170

🧣 A ausência do quarto anel indica a tolerância de 20%.

Acrescendo-se uma tolerância de 10% aos valores dos resistores usados. temos como exemplo:

 $680\Omega \pm 10\%$ Azul (6), cinza (8), marrom (1), prateado ($\pm 10\%$) $3.300\Omega \pm 10\%$ Laranja (3), laranja (3), vermelho (2), prateado (± 10%) $560.000\Omega \pm 10\%$ Verde (5), azul (6), amarelo (4), prateado (± 10%)

RESISTORES DE 1 Ω **A 10** Ω

Para representar resistores de 1 a 10Ω , o código de cores estabelece o uso da cor **dourado** no 3° anel. O dourado neste anel indica a existência da vírgula entre os dois primeiros números.

Seguem alguns exemplos:

$1.8\Omega \pm 5\%$	Marrom (1), cinza (8), dourado, dourado (± 5%)
$4,7\Omega \pm 10\%$	Amarelo (4), violeta (7), dourado, prateado (±10%)
$8,2\Omega \pm 20\%$	Cinza (8), vermelho (2), dourado, sem cor (±20%)

RESISTORES ABAIXO DE 1Ω

Para representar resistores abaixo de 1Ω , o código de cores determina o uso do **prateado** no 3° anel. O prateado neste anel significa a existência de 0 antes dos dois primeiros números.

Seguem alguns exemplos:

$0.39\Omega \pm 20\%$	Laranja (3), branco (9), prateado, sem cor (±20%)
$0.15\Omega \pm 10\%$	Marrom (1), verde (5), prateado, prateado (±10%)

A **Tabela 7** a seguir apresenta o código de cores completo.

Tabela 7 Código de cores completo para resistores.

Cor	Dígitos significativos	Multiplicador	Tolerância
Preto	0	1	
Marrom	1	10	
Vermelho	2	100	
Laranja	3	1.000	
Amarelo	4	10.000	
Verde	5	100.000	
Azul	6	1.000.000	
Violeta	7	_	
Cinza	8	_	
Branco	9	_	
Ouro		0,1	±5%
Prata		0,01	± 10%
Sem cor			± 20%

RESISTORES DE 5 ANÉIS

Em algumas aplicações são necessários resistores com valores mais precisos que se situam entre os valores padronizados.

Estes resistores tem o seu valor impresso no corpo através de cinco anéis coloridos, conforme ilustrado na **Fig.17**.

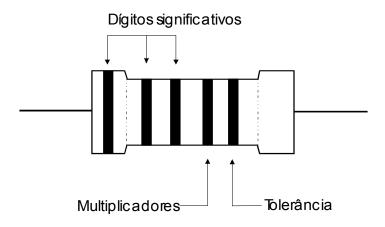


Fig.17 Resistor com cinco anéis.

Nestes resistores, os três primeiros anéis são dígitos significativos, o quarto anel representa o número de zeros (fator multiplicativo) e o quinto anel é a tolerância. A **Tabela 8** mostra o código de cores para estes tipos de resitores.

Tabela 8 Código de cores para resistores de cinco anéis.

Cor	Dígitos significativos	Multiplicador	Tolerância
Preto	0	1	
Marrom	1	10	± 0%
Vermelho	2	100	± 2%
Laranja	3	1.000	
Amarelo	4	10.000	
Verde	5	100.000	
Azul	6	1.000.000	
Violeta	7	_	
Cinza	8	_	
Branco	9	_	
Ouro		0,1	
Prata		0,01	

Apêndice

QUESTIONÁRIO

- 1. Quais as faixas percentuais de tolerância dos resistores?
- 2. Quais os tipos principais de resistores?
- 3. Como deve ser interpretado o código de cores dos resistores ?

BIBLIOGRAFIA

HÜBSCHER, HEINRICH ET ALII. <u>Electrotecnia</u>, curso elemental. Elektrotechnik Grundstufe Barcelona, Reverté, c 1983, 296 pp.

LOUREIRO, HÉLIO ALBUQUERQUE & FERNANDES, LUIZ EDUARDO PENNA. <u>Laboratório de dispositivos eletrônicos</u>. Rio de Janeiro, Guanabara Dois, 1982, 305pp.