Sumário

Introdução	5
Polarização de base por corrente constante	6
Análise da malha da base Determinação do resistor de base	7 8
Estabilidade térmica	10
Fator de estabilidade	11
Estabilidade térmica com corrente de base constante	12
Correção no ponto de operação	13
Regiões de operação de um transistor	18
Região de corte	18
Região de saturação	20
Região ativa	22
Apêndice	23
Questionário	23
Bibliografia	24

Espaço SENAI

Missão do Sistema SENAI

Contribuir para o fortalecimento da indústria e o desenvolvimento pleno e sustentável do País, promovendo a educação para o trabalho e a cidadania, a assistência técnica e tecnológica, a produção e disseminação de informação e a adequação, geração e difusão de tecnologia.

Introdução

As características de um circuito eletrônico transistorizado são dependentes da escolha adequada do ponto de operação do transistor, uma vez que um ponto quiescente mal selecionado pode levar a um mau desempenho do circuito.

Este fascículo tratará de um método simples de obtenção do ponto de operação de um circuito transistorizado, visando a capacitar o leitor a obter na prática o desempenho do circuito transistorizado, previsto através das curvas características.

Para a boa compreensão do conteúdo e desenvolvimento das atividades contidas neste fascículo, o leitor deverá estar familiarizado com os conceitos relativos a:

- Transistor bipolar: relação entre parâmetros de circuito.
- Transistor bipolar: ponto de operação.

Polarização de base por corrente constante

Denomina-se de **polarização de base** o processo de obtenção da corrente de base necessária para levar o transistor ao ponto de operação desejado. Entre os processos de polarização de base, o mais simples é o de polarização por corrente constante.

Através do traçado da reta de carga e da determinação do ponto de operação Q fica determinada a corrente de base quiescente $I_{\rm BQ}$, conforme ilustrado na **Fig.1**.

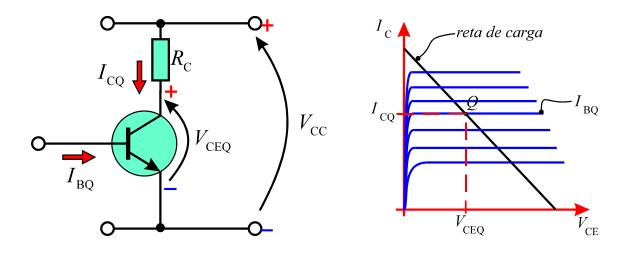


Fig.1 Determinação gráfica do ponto quiescente de um circuito transistorizado.

No método de polarização de base por corrente constante, a corrente de base quiescente $I_{\rm BQ}$ é obtida pelo uso de um **resistor de base**. Como mostrado na **Fig.2**, esse resistor é ligado entre a base e o terminal positivo da fonte de alimentação.

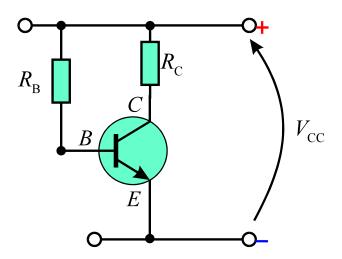


Fig.2 Emprego de um resistor para obtenção da corrente de base quiescente.

ANÁLISE DA MALHA DA BASE

Como mostrado na **Fig.3**, a **malha da base**, é composta pelo arranjo série do resistor de base $R_{\rm B}$ e da junção base-emissor, que se completa juntamente com a fonte de alimentação

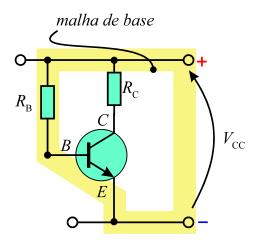


Fig.3 Malha da base de um transistor.

Considerando que a junção base-emissor do transistor se comporta como um diodo, o circuito equivalente da malha da base é aquele mostrado na **Fig.4**.

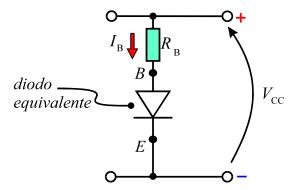


Fig.4 Circuito equivalente da malha da base do transistor.

Observando o circuito equivalente da **Fig.4**, verifica-se que o diodo representativo da junção base-emissor é polarizado diretamente, permitindo a circulação de corrente de base através do resistor.

DETERMINAÇÃO DO RESISTOR DE BASE

A corrente de base $I_{\rm B}$ depende dos seguintes parâmetros:

- Resistência $R_{\rm B}$.
- Tensão de alimentação $V_{\rm CC}$.
- Tipo de transistor.

Com base no circuito equivalente mostrado na **Fig.4**, a corrente de base quiescente é obtida da relação

$$I_{\rm BQ} = \frac{V_{\rm CC} - V_{\rm BE}}{R_{\rm B}} \tag{1}$$

Dessa forma, conhecidos os valores de $I_{\rm BQ}$, da tensão de alimentação $V_{\rm CC}$ e da tensão base-emissor $V_{\rm BE}$, a resistência $R_{\rm B}$ pode ser derivada da **Eq.(1)**, resultando em

$$R_{\rm B} = \frac{V_{\rm CC} - V_{\rm BE}}{I_{\rm BO}} \tag{2}$$

O exemplo a seguir ilustra o procedimento de determinação da resistência $R_{\rm B}$.

Série de Eletrônica SENAI

<u>Exemplo 1:</u> Um transistor de silício BC200 é utilizado no circuito da **Fig.5a**. Com base na curva característica do componente mostrada na **Fig.5b**, determinar o valor de $R_{\rm B}$ necessário à obtenção de uma tensão coletor-emissor no ponto quiescente, $V_{\rm CEO} = -3{\rm V}$.

Fig.5 Circuito e curva característica para o Exemplo 1.

A reta de carga correspondente ao resistor $R_{\rm C}$ = 330 Ω mostrado na **Fig.5a** já está traçada na **Fig.5b**. A interseção dessa reta com a curva correspondente a $-I_{\rm B}$ = 80 μ A, define um valor $-V_{\rm CEQ}$ \approx 3,3 V. Esse valor difere cerca de 10% do valor definido originalmente e pode ser considerado admissível para esse exemplo.

Utilizando na **Eq.(2)**, $-I_{\rm BQ}=0.08$ mA e o valor $-V_{\rm BE}=0.6$ V correspondente ao silício, obtém-se

$$R_{\rm B} = \frac{-7.5 - (-0.6)}{-0.08} = \frac{-6.9}{-0.08} = 86.250 \,\Omega$$

Do resultado do **Exemplo 1**, observa-se que o resistor $R_{\rm B}$ é normalmente de resistência elevada pois as correntes de base em transistores são usualmente baixas.

Estabilidade térmica

A dependência com a temperatura da corrente de fuga $I_{\rm CBO}$ faz que a corrente de coletor seja também influenciada pela temperatura. Isso torna-se evidente a partir da expressão geral para a corrente de coletor

$$I_{\rm C} = \beta I_{\rm B} + (\beta + 1) I_{\rm CBO} \tag{3}$$

Essa dependência com a temperatura da corrente de coletor influencia a tensão sobre o resistor de coletor $V_{\rm Rc}$ e aquela entre coletor e emissor $V_{\rm CE}$. Essa conclusão é obtida analisando-se as expressões para as tensões na malha do coletor do circuito mostrado na **Fig.6**

$$V_{\rm Rc} = R_{\rm C} I_{\rm C} \tag{4}$$

$$V_{\rm CE} = V_{\rm CC} - V_{\rm Rc} \tag{5}$$

A Eq.(4) mostra que variações na corrente de coletor devido a flutuações de temperatura produzem variações em $V_{\rm Rc}$. Essas variações também alteram o valor de $V_{\rm CE}$, como se pode concluir a partir da Eq.(5).

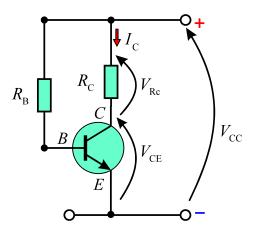
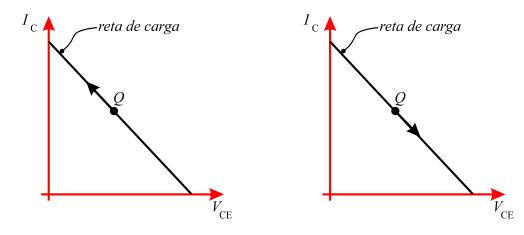



Fig.6 Circuito transistorizado na configuração emissor comum.

A influência da temperatura na localização do ponto de operação do circuito transistorizado pode ser resumida da seguinte forma:

- Acréscimo de temperatura: O ponto de operação se desloca sobre a reta de carga no sentido de correntes crescentes e tensões decrescentes, como mostrado na Fig.7a.
- **Decréscimo de temperatura:** O ponto de operação se desloca sobre a reta de carga no sentido de correntes decrescentes e tensões crescentes, como mostrado na **Fig.7b**.
 - (a) Acréscimo na temperatura
- (b) Decréscimo na temperatura

Fig.7 Influência da temperatura na localização do ponto de operação de um circuito transistorizado.

O grau de influência da temperatura sobre o ponto de operação de um circuito transistorizado pode ser caracterizado a partir do **fator de estabilidade** definido a seguir.

FATOR DE ESTABILIDADE

O fator de estabilidade S é um coeficiente utilizado para avaliar o grau de estabilidade térmica de um estágio transistorizado. Este fator é definido pela relação

$$S = \frac{\Delta I_{\rm C}}{\Delta I_{\rm CBO}} \tag{6}$$

onde:

- $\Delta I_{\rm CBO}=$ variação na corrente de fuga $I_{\rm CBO}$ causada pela variação de temperatura.
- $\Delta I_{\rm C}=$ variação na corrente de coletor $I_{\rm C}$ causada pela variação com a temperatura da corrente de fuga $I_{\rm CBO}$.

Um estágio transistorizado terá melhor estabilidade térmica quanto menor for a variação $\Delta I_{\rm C}$ para uma dada variação $\Delta I_{\rm CBO}$ na corrente de fuga. Dessa forma, a **Eq.(6)** permite estabelecer:

A estabilidade térmica de um estágio transistorizado será tanto melhor quanto menor for o valor do fator de estabilidade térmica S.

Como descrito a seguir, a estabilidade térmica depende fundamentalmente do tipo de aplicação a que se destina o circuito transistorizado.

ESTABILIDADE TÉRMICA COM CORRENTE DE BASE CONSTANTE

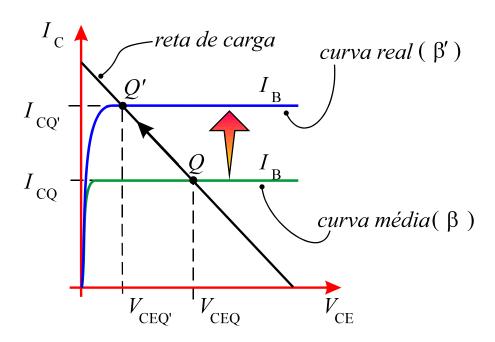
O fator de estabilidade para este método de polarização pode ser obtido determinando a variação $\Delta I_{\rm C}$ devido a uma variação $\Delta I_{\rm CBO}$ no segundo membro da **Eq.(3)**. Impondo que $I_{\rm B}$ seja constante na **Eq.(3)**, o que equivale a uma variação $\Delta I_{\rm B} = 0$, obtém-se

$$\Delta I_{\rm C} = (\beta + 1) \Delta I_{\rm CBO}$$

Essa relação permite obter o fator de estabilidade com uso da **Eq.(6)** resultando em

$$S = \beta + 1 \tag{7}$$

Da **Eq.(7)** nota-se que quanto maior for o ganho de corrente do transistor, maior será o valor de *S* o que implica pior estabilidade térmica do circuito. Portanto, o método de polarização por corrente de base constante deve ser evitado em circuitos que estejam sujeitos a grandes variações de temperatura.


CORREÇÃO NO PONTO DE OPERAÇÃO

Devido a diferenças em processos de fabricação, os transistores de um mesmo tipo podem apresentar ganhos de corrente distintos, que podem variar em uma ampla faixa de valores. O transistor BC337, por exemplo, pode apresentar um ganho de corrente situado entre 60 e 630. Devido a essa variabilidade, a característica de saída fornecida pelo fabricante representa o comportamento médio de uma dada especificação de transistor.

Como na polarização por corrente de base constante o ponto de operação depende diretamente do ganho de corrente do transistor, é comum ocorrer uma diferença entre os valores obtidos no circuito e aqueles previstos em projeto.

A **Fig.8** ilustra o que ocorre quando o ganho do transistor é superior ao valor médio obtido das curvas características de saída contidas no folheto de especificações técnicas.



Fig.8 Alteração do ponto de operação para um transistor com ganho superior ao valor médio especificado pelo fabricante.

Como pode ser aí observado, o ponto de operação Q obtido da interseção da reta de carga com a curva média está deslocado para cima, ocorrendo no ponto Q' da curva característica do componente real. Note-se que, para uma mesma corrente de base $I_{\rm B}$, a curva característica do componente real está deslocada para cima, pois o ganho de corrente do componente real β' é superior ao valor médio β fornecido no folheto de especificações do fabricante. Nessa situação, o valor real da tensão coletor-emissor $V_{\rm CEQ}$ é inferior ao valor esperado $V_{\rm CEQ}$ e a corrente de coletor real $I_{\rm CQ'}$ é maior do que o valor $I_{\rm CQ}$ obtido da curva característica média.

A **Fig.9** mostra a alteração observada no ponto de operação quando o ganho do transistor é inferior ao valor médio. Nesse caso, o ponto de operação Q obtido na curva média está deslocado para baixo, ocorrendo no ponto Q' da curva característica referente à mesma corrente de base no componente real. Nessa situação, o valor real da tensão coletor-emissor $V_{\rm CEQ'}$ é superior ao valor esperado $V_{\rm CEQ}$, e a corrente de coletor real $I_{\rm CQ'}$ é inferior ao valor $I_{\rm CQ}$ obtido da curva característica média.

Fig.9 Alteração do ponto de operação para um transistor com ganho inferior ao valor médio especificado pelo fabricante.

A **Tabela 1** resume as alterações que podem ocorrer nos parâmetros do ponto de operação de um transistor.

Tabela 1 Possíveis modificações nos parâmetros elétricos de um transistor em relação aos valores previstos em projeto.

Ganho real > Ganho médio	Ganho real < Ganho médio
$\beta' > \beta$	$\beta' < \beta$
$V_{ m CEQ'} < V_{ m CEQ}$	$V_{\rm CEQ'} > V_{\rm CEQ}$
$I_{\rm CQ'} > I_{\rm CQ}$	$I_{\rm CQ'} < I_{\rm CQ}$

Quando diferenças significativas ocorrem, é necessário modificar o circuito de forma que o ponto de operação fique o mais próximo possível daquele desejado. Como o ganho de corrente do transistor não pode ser alterado, a correção deve ser feita alterando-se o resistor de base, conforme demonstrado nos exemplos a seguir.

Exemplo 2: O circuito mostrado na **Fig.10** utiliza um transistor BC337, e foi projetado para operar com os parâmetros mostrados na segunda coluna da **Tabela 2**, obtidos no ponto de operação Q da **Fig.10**. No entanto, após a montagem do circuito, foram observados os valores mostrados na terceira coluna da **Tabela 2**. Determinar o valor $R_{\rm B'}$ do resistor de base para que o circuito opere com os valores desejados da corrente de coletor e da tensão coletor-emissor.

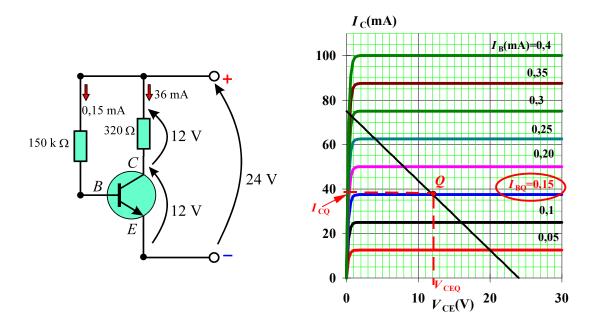


Fig.10 Circuito e curvas características para o Exemplo 2.

Parâmetro	Valor projetado	Valor observado
Tensão coletor-emissor	$V_{\rm CEQ} = 12 \text{ V}$	$V_{\text{CEQ}} = 7.5 \text{ V}$
Queda no resistor $R_{\rm C}$	$V_{\rm ReQ}$ =12 V	$V_{\text{ReQ'}} = 16.5 \text{ V}$
Corrente de coletor	$I_{\rm CQ}$ =36 mA	$I_{\rm CQ} = 50 \text{ mA}$

Tabela 2 Parâmetros de circuito para o Exemplo 2.

Para uma corrente de base $I_{\rm BQ}$ =0,15 mA, o ganho de corrente médio pode ser obtido utilizando-se o valor $I_{\rm CQ}$ = 36 mA listado na segunda coluna da **Tabela 2**, resultando em

$$\beta = \frac{I_{\rm CQ}}{I_{\rm BO}} = \frac{36}{0.15} = 240$$

No entanto a corrente de coletor observada é $I_{\rm CQ'} = 50$ mA, resultando em um ganho real

$$\beta' = \frac{I_{\text{CQ'}}}{I_{\text{BO}}} = \frac{50}{0.15} = 333.33$$

Portanto o ganho real é superior ao valor médio. Por essa razão a corrente de coletor resultante é superior ao valor projetado. Como consequência a queda de tensão no resistor $R_{\rm C}$ se torna maior, diminuindo assim a tensão coletoremissor em relação ao valor calculado em projeto.

Para corrigir o ponto de operação do circuito, deve utilizar-se o valor do ganho real do transistor para determinar a corrente de base $I_{\rm BQ'}$ que seria necessária para fornecer a corrente de coletor desejada de 36 mA. Isso pode ser feito utilizando-se o valor observado β' para o ganho de corrente resultando em

$$I_{\text{BQ'}} = \frac{I_{\text{CQ'}}}{\beta'} = \frac{36}{333,33} = 0.11 \text{ mA}$$

Ou seja, a corrente de base deve ser diminuída de 0,15 mA para 0,11 mA de forma que os valores desejados listados na segunda coluna da **Tabela 2** sejam obtidos. Essa diminuição no valor da corrente de base só pode ser obtida aumentando-se o valor $R_{\rm B}$ do resistor de base. O valor desejado $R_{\rm B'}$ pode ser obtido pelo uso da **Eq.(2)**, fornecendo

$$R_{\rm B'} = \frac{V_{\rm CC} - V_{\rm BE}}{I_{\rm BO'}} = \frac{24 \,\mathrm{V} - 0.6 \,\mathrm{V}}{0.00011 \,\mathrm{A}} = 212.7 \,\mathrm{k}\Omega$$

Exemplo 3: Para o mesmo circuito mostrado na **Fig.10**, projetado para operar com os parâmetros mostrados na segunda coluna da **Tabela 3**, foram observados os valores mostrados na terceira coluna da **Tabela 3**. Determinar o valor $R_{\rm B'}$ do resistor de base para que o circuito opere com os valores desejados da corrente de coletor e da tensão coletor-emissor.

Tabela 3 Parâmetros de circuito para o **Exemplo 3**.

Parâmetro	Valor projetado	Valor observado
Tensão coletor-emissor	$V_{\rm CEQ} = 12 \text{ V}$	$V_{\text{CEQ'}} = 15 \text{ V}$
Queda no resistor $R_{\rm C}$	$V_{\rm RcQ}$ =12 V	$V_{\text{ReQ'}} = 9 \text{ V}$
Corrente de coletor	$I_{\rm CQ}$ =36 mA	$I_{\rm CQ'}$ = 27 mA

Este exemplo segue os mesmos passos do **Exemplo 2**. No caso presente, o transistor apresenta um ganho real inferior ao ganho médio. O valor do ganho real é obtido utilizando-se o valor observado de 27 mA para a corrente de coletor, resultando em

$$\beta' = \frac{I_{\text{CQ'}}}{I_{\text{BO}}} = \frac{27}{0.15} = 180$$

A corrente de base necessária para produzir uma corrente de coletor de 36 mA pode ser determinada utilizando-se o valor obtido para o ganho real do transistor, resultando em,

$$I_{\text{BQ'}} = \frac{I_{\text{CQ}}}{\beta'} = \frac{36}{180} = 0.2 \text{ mA}$$

O valor desejado $R_{B'}$ é obtido da **Eq.(2)**, fornecendo

$$R_{\rm B'} = \frac{V_{\rm CC} - V_{\rm BE}}{I_{\rm BO'}} = \frac{24 \,\text{V} - 0.6 \,\text{V}}{0.0002 \,\text{A}} = 117 \,\text{k}\Omega$$

Regiões de operação de um transistor

A localização do ponto de operação de um estágio transistorizado sobre a reta de carga define três regiões de operação descritas a seguir.

REGIÃO DE CORTE

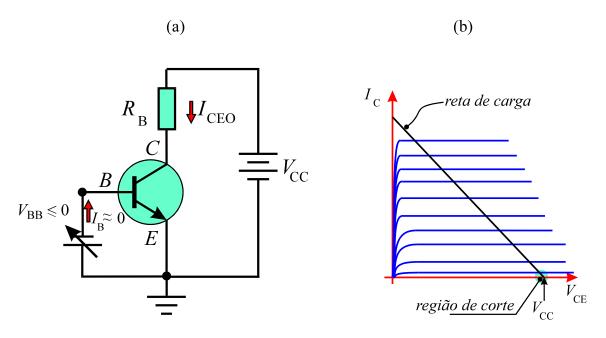
Um transistor está na região de corte quando a base é polarizada de forma a tornar a corrente de coletor praticamente nula. Essa condição é obtida na iminência de polarização inversa da junção base-emissor, conforme ilustrado na **Fig.11a**.

Na região de corte a corrente de base é reduzida a um valor praticamente nulo. Da relação entre correntes no transistor dada pela **Eq.(3)** e reproduzida a seguir

$$I_{\rm C} = \beta I_{\rm B} + (\beta + 1)I_{\rm CBO} \tag{7}$$

a condição $I_{\rm B} \approx 0$ fornece

$$I_{\text{C.corte}} = (\beta + 1)I_{\text{CBO}} = I_{\text{CEO}}$$
 (8)


Dessa forma, a corrente de coletor corresponde à corrente de fuga, com um valor da ordem de alguns microampères para transistores de silício.

Devido ao pequeno valor da corrente de coletor, a queda de tensão no resistor de coletor é praticamente nula e a tensão coletor-emissor torna-se

$$V_{\text{CE,corte}} \approx V_{\text{CC}}$$
 (9)

No diagrama $I_C \times V_{CE}$, a região de corte está localizada bem próxima ao eixo horizontal, conforme mostrado na **Fig.11b**.

Fig.11 (a) Circuito transistorizado operando na condição de corte. **(b)** Região de corte no diagrama da característica de saída do transistor.

As características da região de corte estão sumarizadas na Tabela 4.

Tabela 4 Características da região de corte.

Junção coletor-base: inversamente polarizada.

Junção base-emissor: na iminência de polarização inversa.

Corrente de base: $I_B \approx 0$.

Corrente de coletor: $I_C = I_{CEO}$

Tensão coletor-emissor: $V_{\rm CE} \approx V_{\rm CC}$

Nos transistores de silício basta anular-se a corrente de base para levar o transistor à condição de corte.

REGIÃO DE SATURAÇÃO

Um transistor está na região de saturação quando a junção base-emissor está diretamente polarizada com a condição adicional de a tensão $V_{\rm CE}$ tornar-se inferior a tensão $V_{\rm BE}$.

As consequências decorrentes dessa condição podem ser analisadas com base no transistor *npn* mostrado na **Fig.12**. A relação entre tensões nos terminais do transistor pode ser posta na forma

$$V_{\rm CB} = V_{\rm CE} - V_{\rm BE} \tag{10}$$

Fig.12 Tensões entre terminais em um transistor *npn*.

Da **Eq.(10)** nota-se que a condição $V_{\rm CE}$ < $V_{\rm BE}$ fornece

$$V_{\rm CE} - V_{\rm BE} < 0 \Longrightarrow V_{\rm CB} < 0$$

Tendo a base do transistor *npn* polaridade positiva em relação ao coletor, a junção base-coletor fica diretamente polarizada. Portanto, na região de saturação a corrente de coletor pode ser razoavelmente elevada.

No gráfico com as curvas características de saída do transistor, a região de saturação fica localizada nas proximidades do eixo vertical. Para auxiliar o exame das curvas características naquela região, os folhetos de especificações técnicas fornecem um gráfico adicional detalhando a região de saturação, do tipo mostrado na **Fig.13**.

Naquela porção do diagrama da **Fig.13**, os valores de $V_{\rm CE}$ são geralmente inferiores ao potencial de barreira de uma junção semicondutora. Note-se que nessa região a corrente de coletor é influenciada tanto pelo valor da tensão $V_{\rm CE}$ como pelo valor da corrente de base.

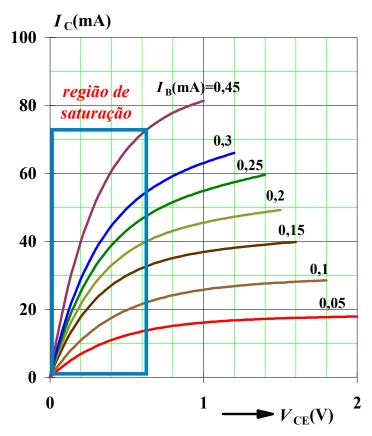


Fig.13 Gráfico detalhando a região de saturação de um transistor.

As características da região de saturação estão sumarizadas na Tabela 5.

Tabela 5 Características da região de saturação.

Junção coletor-base: diretamente polarizada.

Junção base-emissor: diretamente polarizada com $V_{\rm BE} > V_{\rm CE}$. **Corrente de coletor:** influenciada pelos valores de $I_{\rm B}$ e de $V_{\rm CE}$.

REGIÃO ATIVA

A região ativa corresponde a todo o trecho da reta de carga situado entre as regiões de corte e de saturação, conforme ilustrado na **Fig.14**.

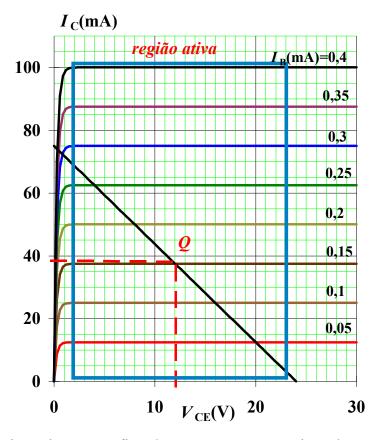


Fig.14 Região ativa no gráfico das curvas características de um transistor.

Essa é a região característica de funcionamento dos estágios amplificadores, pois é aí que a corrente de coletor é controlada apenas pela corrente de base, não sofrendo praticamente nenhuma influência da tensão coletor-emissor. Para pontos de operação nessa região são válidas as regras de polarização delineadas na **Tabela 6**.

Tabela 6 Características da região ativa.

Junção coletor-base: inversamente polarizada.

Junção base-emissor: diretamente polarizada com $V_{\rm BE} < V_{\rm CE} < V_{\rm CC}$

Corrente de coletor: Influenciada apenas pela corrente de base.

Apêndice

QUESTIONÁRIO

- 1. O que se entende por polarização de base por corrente constante em um transistor?
- 2. Em um circuito transistorizado na configuração emissor comum, quais os elementos que compõem a malha da base?
- 3. Descreva de que forma a temperatura influencia o ponto de operação de um circuito transistorizado na configuração emissor comum.
- 4. O que é fator de estabilidade?
- 5. Qual a relação entre estabilidade térmica e fator de estabilidade em um circuito transistorizado?
- 6. Em que situações o método de polarização de base por corrente constante deve ser evitado? Por quê?
- 7. Descreva que alterações são produzidas no ponto de operação de um transistor na configuração emissor comum, nas seguintes situações:
 - (a) ganho real > ganho médio.
 - (b) ganho real < ganho médio.
- 8. Quais as regiões de operação de um transistor e onde estão situadas no diagrama $I_{\rm C} \times V_{\rm CE}$?
- 9. Qual a região que deve ser utilizada para o emprego de transistores em estágios amplificadores?

BIBLIOGRAFIA

CIPELLI, Antônio Marco Vicari & SANDRINI, Valdir João. <u>Teoria do desenvolvimento de Projetos de Circuitos Eletrônicos</u>. 7.ed. São Paulo, Érica, 1983, 580p.

MILLMAN, Jacob & HALKIAS, Christos C. <u>Eletrônica:</u> Dispositivos e circuitos, Trad. Elédio José Robalinho e Paulo Elyot Meirelles Villela. São Paulo, Mc-Graw Hill do Brasil. 1981, v.2

SENAI/ Departamento Nacional. <u>Reparador de circuitos eletrônicos</u>; eletrônica básica II. Rio de Janeiro, Divisão de Ensino e Treinamento, c 1979. (Coleção Básica Senai, Módulo 1).