Sumário

Introdução	5
Polarização por divisor de tensão	6
Análise do circuito do coletor	7
O circuito da base	9
Determinação dos elementos de circuito	10
Corrente de emissor	10
Ganho do transistor	10
Parâmetros de entrada	10
Parâmetros da malha do coletor	11
Modificação do ponto de operação	16
Fator de estabilidade	19
O processo de estabilização térmica	19
Apêndice	22
Questionário	22
Bibliografia	23

Espaço SENAI

Missão do Sistema SENAI

Contribuir para o fortalecimento da indústria e o desenvolvimento pleno e sustentável do País, promovendo a educação para o trabalho e a cidadania, a assistência técnica e tecnológica, a produção e disseminação de informação e a adequação, geração e difusão de tecnologia.

Introdução

Um fator que sempre representa um problema na utilização dos componentes semicondutores é a dependência térmica dos parâmetros materiais. O transistor não foge à regra. Circuitos transistorizados são sensíveis às variações de temperatura, sofrendo mudanças no ponto de operação.

Uma forma de amenizar os efeitos da dependência térmica é polarizar o transistor por divisão de tensão.

Este fascículo tratará dessa técnica de polarização, tratando do princípio de funcionamento do circuito, do cálculo de parâmetros elétricos e das características, visando a capacitar o leitor na tarefa de polarização e correção do ponto de operação de um circuito transistorizado.

Para a boa compreensão do conteúdo e desenvolvimento das atividades contidas neste fascículo, o leitor deverá estar familiarizado com os conceitos relativos a:

- Transistor bipolar: relação entre parâmetros de circuito.
- Transistor bipolar: ponto de operação.
- Divisor de tensão.

Polarização por divisor de tensão

A polarização da base de um transistor pode ser feita a partir da utilização de um divisor de tensão, através do qual aplica-se uma tensão $V_{\rm BE}$ entre a base e o emissor do transistor.

A Fig.1 mostra um circuito transistorizado que emprega esse tipo de polarização. Essa técnica é denominada de polarização de base por divisor de tensão.

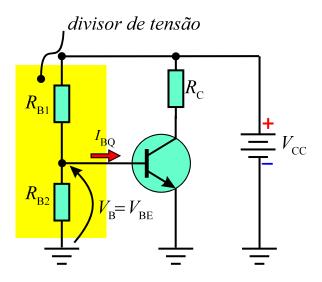
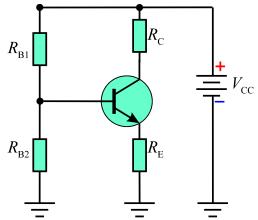


Fig.1 Circuito transistorizado com base polarizada por divisor de tensão.

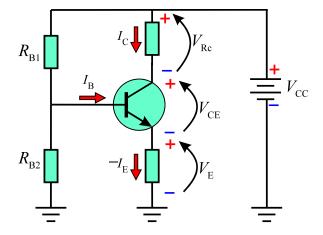

Do divisor de tensão mostrado na **Fig.1** resulta um potencial $V_{\rm B}$ no terminal base do transistor que polariza diretamente a junção base-emissor, produzindo assim a corrente de base quiescente $I_{\rm BQ}$.

A finalidade do divisor de tensão é polarizar diretamente a junção base-emissor.

Como se pode observar na **Fig.1**, com o emissor aterrado, o potencial da base $V_{\rm B}$ corresponde à tensão $V_{\rm BE}$ aplicada à junção base-emissor do transistor. Dessa forma, o controle da corrente $I_{\rm BQ}$ é obtido ajustando-se a tensão $V_{\rm BE}$ fornecida pelo divisor.

Normalmente os circuitos polarizados por divisão de tensão têm ainda um resistor de emissor $R_{\rm E}$, como mostrado na **Fig.2**. Esse resistor tem por finalidade melhorar a estabilidade térmica do circuito.

A inclusão de um resistor de emissor no circuito de polarização de um transistor melhora a estabilidade térmica do circuito.


Fig.2 Emprego de um resistor de emissor em um circuito transistorizado.

O uso conjunto de um divisor de tensão e de um resistor de emissor propicia um alto grau de estabilidade térmica no circuito. Outra característica importante desse tipo de polarização é a menor variação dos parâmetros de polarização quando o transistor é substituído.

ANÁLISE DO CIRCUITO DO COLETOR

Nos circuitos polarizados por divisor de tensão, a malha de coletor, mostrada na **Fig.3**, é composta dos seguintes elementos:

- Fonte de alimentação.
- Resistor de coletor.
- Transistor.
- Resistor de emissor.

Fig.3 Malha de coletor de um transistor polarizado por divisor de tensão.

Como se pode observar na **Fig.3**, a tensão fornecida pela fonte distribui-se sobre os elementos da malha do coletor na forma

$$V_{\rm CC} = V_{\rm R} + V_{\rm CE} + V_{\rm E} \tag{1}$$

onde

$$V_{\rm Rc} = R_{\rm C} I_{\rm C} \tag{2}$$

$$V_{\rm E} = R_{\rm E} \left(-I_{\rm E} \right) \tag{3}$$

Na **Eq.(1)** a dependência da tensão $V_{\rm CE}$ na corrente de coletor é determinada através das curvas características de saída do transistor.

A Eq.(3) pode ser reescrita na forma

$$V_{\rm E} = R_{\rm E} \left(I_{\rm C} + I_{\rm B} \right) \tag{4}$$

Como a corrente de base é geralmente muito inferior à corrente de coletor, é válida a seguinte aproximação:

$$I_{\rm C} + I_{\rm B} \approx I_{\rm C}$$

e a Eq.(4) pode ser posta na forma

$$V_{\rm E} \approx R_{\rm E} I_{\rm C} \tag{5}$$

A seguir é apresentado um exemplo de utilização das equações do circuito do coletor.

Exemplo 1: Para o circuito mostrado na **Fig.4**, determinar os valores de V_{Rc} , V_E e V_{CE} .

As tensões nos resistores de coletor e de emissor são obtidas das **Eqs.(2)** e **(5)**, resultando em

$$V_{\rm Rc} = 1.000 \,\Omega \times 0.004 \,{\rm A} = 4 \,{\rm V}$$

$$V_{\rm E} = 270 \ \Omega \times 0.004 \ {\rm A} = 1.08 \ {\rm V}$$

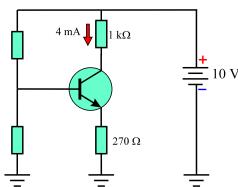
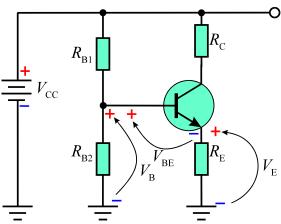


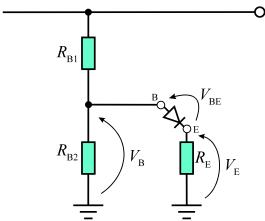
Fig.4 Circuito transistorizado do Exemplo1.

A tensão $V_{\rm CE}$ é obtida da Eq.(1):

$$V_{\rm CC} = V_{\rm Rc} + V_{\rm CE} + V_{\rm E} \Rightarrow V_{\rm CE} = V_{\rm CC} - V_{\rm Rc} - V_{\rm E} \Rightarrow V_{\rm CE} = 10 - 4 - 1{,}08$$
$$\Rightarrow V_{\rm CE} = 4{,}92~\rm V$$


O CIRCUITO DA BASE

O circuito da base, que compreende o divisor de tensão, tem por finalidade polarizar diretamente a junção base-emissor do transistor e estabelecer o valor quiescente da corrente de base $I_{\rm BQ}$.


A tensão base-emissor $V_{\rm BE}$ é a diferença de potencial entre os terminais B e E do transistor. Como se pode observar na **Fig.5**

$$V_{\rm BE} = V_{\rm B} - V_{\rm E} \tag{6}$$

A tensão $V_{\rm BE}$ aplicada à junção base-emissor dá origem a uma corrente de base que pode ser obtida a partir da curva característica da junção. Dessa forma, a junção base-emissor se comporta efetivamente como um diodo diretamente polarizado, conforme ilustrado na **Fig.6**.

Fig.5 Circuito transistorizado com base polarizada por divisor de tensão.

Fig.6 Circuito equivalente da junção base-emissor, com base polarizada por divisor de tensão.

DETERMINAÇÃO DOS ELEMENTOS DE CIRCUITO

A inclusão do resistor de emissor torna o circuito mais estável termicamente, o que é interessante do ponto de vista prático. Entretanto, essa adição modifica a análise gráfica do circuito, pois a reta de carga deve levar em conta a presença daquele novo elemento no circuito. Por essa razão, a determinação dos valores dos resistores de polarização é usualmente feita matematicamente.

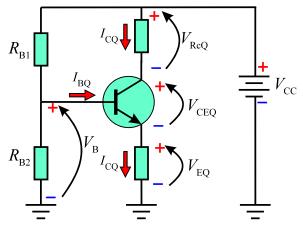
Para simplificar a análise matemática, podem ser consideradas algumas aproximações e estimativas, que em nada prejudicam os resultados obtidos, como delineado a seguir.

CORRENTE DE EMISSOR

A pequena diferença existente entre $I_{\rm C}$ e $I_{\rm E}$ permite utilizar a aproximação

$$I_{\rm E} \approx I_{\rm C}$$

cujo erro é pequeno comparado com a tolerância de 5 a 10% dos resistores do circuito.


GANHO DO TRANSISTOR

O ganho de transistores que empregam a polarização por divisor de tensão usualmente satisfaz a condição β≥100.

PARÂMETROS DE ENTRADA

Na determinação dos valores dos elementos de circuito, mostrados na **Fig.7**, os parâmetros de entrada são geralmente:

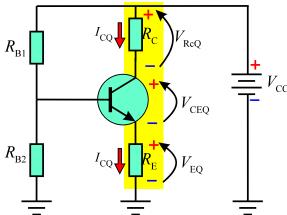
- A tensão de alimentação, $V_{\rm CC}$.
- A corrente de coletor quiescente, I_{CQ} .
- A tensão quiescente sobre o resistor de coletor, $V_{\rm ReQ}$.

Fig.7 Alguns parâmetros do circuito transistorizado.

Série de Eletrônica SENAI

A corrente de coletor I_{CQ} nos estágios transistorizados polarizados por divisor de tensão assume normalmente valores que variam de 1 a 10 mA.

O parâmetro $V_{\rm RcQ}$ é diretamente relacionado à tensão de alimentação. Na prática adota-se normalmente uma tensão no resistor de coletor próxima à metade da tensão de alimentação, ou seja,


$$V_{\rm ReQ} \approx \frac{V_{\rm CC}}{2} \tag{7}$$

PARÂMETROS DA MALHA DO COLETOR

Dispondo dos valores $V_{\rm CC}$, $I_{\rm CQ}$ e $V_{\rm RcQ}$ pode-se determinar os valores dos componentes da malha do coletor, mostrados na **Fig.8**.

Resistor de coletor: É calculado através da Lei de Ohm, utilizando os valores conhecidos de I_{CQ} e V_{RcQ} , resultando em

$$R_{\rm C} \approx \frac{V_{\rm ReQ}}{I_{\rm CO}}$$
 (8)

Fig.8 Parâmetros da malha do coletor no circuito transistorizado.

Resistor de emissor: Observa-se na prática que o emprego de um resistor de emissor tal que a queda de tensão satisfaça à condição

$$V_{\rm EO} \approx 0.1 V_{\rm CC}$$
 (9)

permite a obtenção de um fator de estabilidade ótimo, usualmente na faixa de valores $10 \le S \le 15$. Nessa condição, o resistor de emissor é determinado da expressão

$$R_{\rm E} \approx \frac{0.1 V_{\rm CC}}{I_{\rm CQ}} \tag{10}$$

Resistores de base: O divisor de tensão formado pelos resistores de base tem por finalidade fornecer a tensão $V_{\rm B}$ à base do transistor, como mostrado na **Fig.9**.

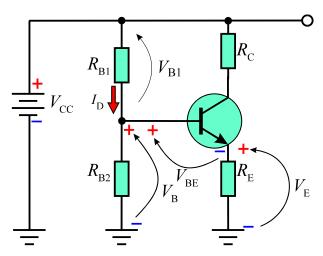


Fig.9 Tensão fornecida pelo divisor à base do transistor.

Para que a junção base-emissor conduza, a tensão fornecida à base deve corresponder à soma

$$V_{\rm B} = V_{\rm BEO} + V_{\rm EO} \tag{11}$$

Com base na **Fig.9**, a queda de tensão sobre $R_{\rm B1}$ pode ser obtida de

$$V_{\rm B1} = V_{\rm CC} - V_{\rm B} \tag{12}$$

Dispondo dos dois valores de tensão sobre os resistores, deve-se assumir um valor conhecido para a corrente $I_{\rm D}$ através do divisor. Esse valor deve ser suficientemente grande para que pequenas variações na corrente de base não alterem significativamente a proporção de divisão da tensão sobre os resistores. Dessa forma, é prática usual adotar uma corrente através do divisor satisfazendo à condição

$$I_{\rm D} = 0.1I_{\rm CO} \tag{13}$$

Com essa escolha, considerando-se que o transistor tenha um ganho de pelo menos 100, a corrente do divisor é pelo menos 10 vezes superior à corrente de base.

Uma vez obtidos os parâmetros $V_{\rm B1}$ e $V_{\rm B}$ por intermédio das **Eqs.(11)** e **(12)**, utiliza-se a **Eq.(13)** para se obterem os valores de resistência do divisor, resultando em

$$R_{\rm B1} = \frac{V_{\rm CC} - V_{\rm B}}{I_{\rm D}} \tag{14}$$

$$R_{\rm B2} = \frac{V_{\rm BEQ} + V_{\rm EQ}}{I_{\rm D}} \tag{15}$$

As expressões utilizadas na determinação dos parâmetros do circuito transistorizado com polarização por divisor de tensão estão sumarizadas na **Tabela 1.**

Tabela 1 Sumário das expressões utilizadas na determinação dos parâmetros de um circuito transistorizado com polarização por divisor de tensão.

um cheuno transistorizado com porarização por divisor de tensão.		
Parâmetros de entrada		
Tensão de alimentação	$V_{ m CC}$	
Tensão no resistor de coletor ou tensão	$V_{ m ReQ}$ ou $V_{ m CEQ}$	
coletor-emissor		
Corrente de coletor	$I_{ m CQ}$	
Parâmetros de saída		
Parâmetro	Equação	
Tensão no resistor de emissor	$V_{\rm EQ} \approx 0.1 V_{\rm CC}$	
Tensão no resistor de coletor, conhecida a tensão coletor-emissor	$V_{\rm ReQ} = V_{\rm CC} - V_{\rm CEQ} - V_{\rm EQ}$	
Resistor de coletor	$R_{\rm C} \approx \frac{V_{\rm RcQ}}{I_{\rm CQ}}$	
Resistor de emissor	$R_{\rm E} \approx \frac{0.1 V_{\rm CC}}{I_{\rm CQ}}$	
Tensão no resistor $R_{\rm B2}$	$V_{\rm B} = V_{\rm BEQ} + V_{\rm EQ}$	
Tensão no resistor $R_{\rm B1}$	$V_{\rm B1} = V_{\rm CC} - V_{\rm B}$	
Corrente no divisor	$I_{\rm D} = 0.1I_{\rm CQ}$	
Resistor $R_{\rm B2}$	$R_{\rm B2} = \frac{V_{\rm BEQ} + V_{\rm EQ}}{I_{\rm D}}$	
Resistor $R_{\rm B1}$	$R_{\rm B1} = \frac{V_{\rm CC} - V_{\rm B}}{I_{\rm D}}$	

Os exemplos a seguir ilustram o emprego das expressões do circuito transistorizado com polarização por divisor de tensão.

Exemplo 1: Para o circuito mostrado na **Fig.10**, determinar os valores de $R_{\rm C}$, $R_{\rm E}$, $R_{\rm B1}$ e $R_{\rm B2}$ para que o circuito opere com uma corrente de coletor de 5,8 mA e uma tensão no resistor de coletor de 10 V.



Fig.10 Circuito transistorizado para o Exemplo 1.

Utilizando a **Tabela 1** resulta:

Parâmetros de entrada		
Tensão de alimentação	$V_{\rm CC} = 20 \text{ V}$	
Tensão no resistor de coletor	$V_{\rm RcQ} = 10 \text{ V}$	
Corrente de coletor	$I_{\rm CQ}$ = 5,8 mA	
Parâmetros de saída		
Resistor de coletor	$R_{\rm C} \approx \frac{10}{0,0058} = 1.724 \Omega$	
Tensão no resistor de emissor	$V_{\rm EQ} \approx 0.1 \times 20 = 2 \text{ V}$	
Resistor de coletor	$R_{\rm C} \approx \frac{10}{0,0058} = 1.724 \Omega$	
Resistor de emissor	$R_{\rm E} \approx \frac{2}{0,0058} = 344\Omega$	
Tensão no resistor $R_{\rm B2}$	$V_{\rm B} = 0.6 + 2 = 2.6 \rm V$	
Tensão no resistor R _{B1}	$V_{\rm B1} = 20 - 2.6 = 17.4 \rm V$	
Corrente no divisor	$I_{\rm D} = 0.1 \times 5.8 = 0.58 \mathrm{mA}$	
Resistor R _{B2}	$R_{\rm B2} = \frac{0.6 + 2}{0.00058} = 4.48 \mathrm{k}\Omega$	
Resistor R _{B1}	$R_{\rm B1} = \frac{20 - 2.6}{0.00058} = 30 \mathrm{k}\Omega$	

Exemplo 2: Para o circuito mostrado na **Fig.11**, determinar os valores de $R_{\rm C}$, $R_{\rm E}$, $R_{\rm B1}$ e $R_{\rm B2}$ para obter uma tensão coletor-emissor de 7 V e uma corrente de coletor de 12 mA.

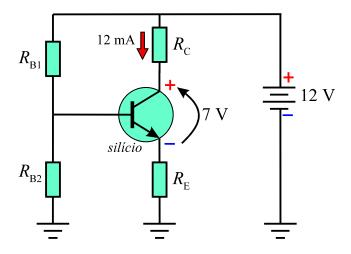


Fig.11 Circuito transistorizado para o Exemplo 2.

Utilizando a **Tabela 1** resulta:

Parâmetros de entrada		
Tensão de alimentação	$V_{\rm CC} = 12 \text{ V}$	
Tensão coletor-emissor	$V_{\rm CEQ} = 7 \text{ V}$	
Corrente de coletor	$I_{\rm CQ}$ = 12 mA	
Parâmetros de saída		
Tensão no resistor de emissor	$V_{\rm EQ} \approx 0.1 \times 12 = 1.2 \text{ V}$	
Tensão no resistor de coletor	$V_{\text{ReQ}} = 12 - 7 - 1.2 = 3.8 \text{ V}$	
Resistor de emissor	$R_{\rm EQ} \approx \frac{1.2}{0.012} = 100 \ \Omega$	
Resistor de coletor	$R_{\rm C} \approx \frac{3.8}{0.012} = 317 \ \Omega$	
Tensão no resistor $R_{\rm B2}$	$V_{\rm B} = 0.6 + 1.2 = 1.8 {\rm V}$	
Tensão no resistor $R_{\rm B1}$	$V_{\rm B1} = 12 - 1.8 = 10.2 \text{ V}$	
Corrente no divisor	$I_{\rm D} = 0.1 \times 12 = 1.2 \mathrm{mA}$	
Resistor $R_{\rm B2}$	$R_{\rm B2} = \frac{0.6 + 1.2}{0.0012} = 1.500 \Omega$	
Resistor R _{B1}	$R_{\rm B1} = \frac{12 - 1.8}{0.0012} = 8.500\Omega$	

MODIFICAÇÃO DO PONTO DE OPERAÇÃO

Os estágios transistorizados polarizados por divisor de tensão possuem ótima estabilidade térmica, não necessitando de correções quando submetidos a variações de temperatura. Dessa forma, a alteração intencional do ponto de operação só pode ser obtida pela modificação de alguns elementos de circuito.

A discussão a seguir ilustra a forma de obtenção de um aumento ou diminuição da tensão coletor-emissor de um estágio polarizado por divisor de tensão com os parâmetros indicados na **Fig.12**.

Seja, por exemplo, deseja situação em que se aumentar a tensão $V_{\rm CE}$ transistor. Para isso é necessário reduzir a queda de tensão nos resistores $R_{\rm E}$ e $R_{\rm C}$, como sugere a Fig.13.

As tensões $V_{\rm Rc}$ e $V_{\rm E}$ são proporcionais à corrente $I_{\rm C}$, e portanto uma redução nos valores de $V_{\rm Rc}$ e $V_{\rm E}$ pode ser obtida pela redução de $I_{\rm C}$.

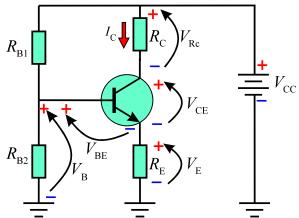
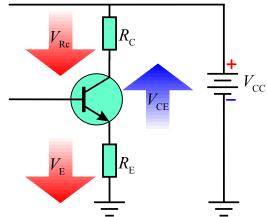
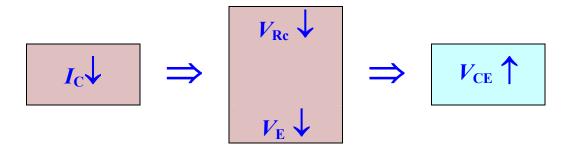
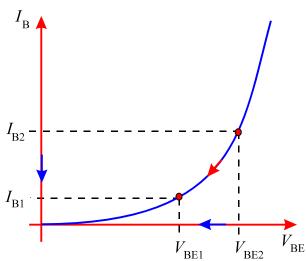
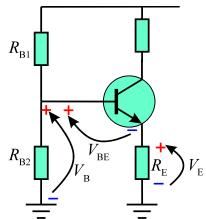




Fig.12 Estágio transistorizado com base polarizada por divisor de tensão.

Fig.13 Aumento de V_{CE} pela diminuição dos parâmetros V_{Rc} e V_{E} .

Série de Eletrônica SENAI


Como a corrente $I_{\rm C}$ é proporcional a $I_{\rm B}$, para reduzir $I_{\rm C}$ deve-se reduzir $I_{\rm B}$.


A corrente $I_{\rm B}$ varia com a tensão $V_{\rm BE}$ de acordo com a curva mostrada na **Fig.14** e, portanto, uma redução na corrente $I_{\rm B}$ pode ser obtida diminuindo-se a tensão $V_{\rm BE}$.

Como mostra a **Fig.15**, a tensão $V_{\rm BE}$ corresponde à diferença de potencial entre os terminais da base e do emissor. Com $V_{\rm E}$ já tendo sido reduzido pela redução de $I_{\rm C}$, deve-se também reduzir $V_{\rm B}$ para obter-se a diminuição desejada em $V_{\rm BE}$.

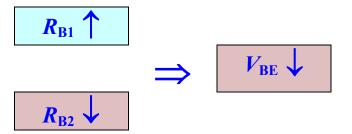

Como se pode observar na **Fig.15**, a tensão $V_{\rm B}$ é aquela fornecida pelo divisor de tensão e corresponde à queda de tensão sobre o resistor $R_{\rm B2}$. Assim a diminuição de $V_{\rm BE}$ pode ser obtida diminuindo o valor de $R_{\rm B2}$ e aumentando o valor de $R_{\rm B1}$, de forma a garantir que a corrente $I_{\rm D}$ não sofra nenhuma modificação substancial. Esse efeito está ilustrado no diagrama seguinte.

Fig.14 Curva característica $I_{\rm B} \times V_{\rm BE}$.

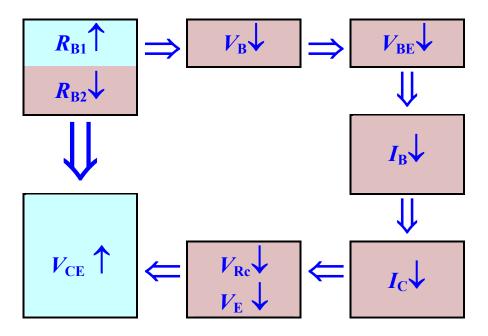
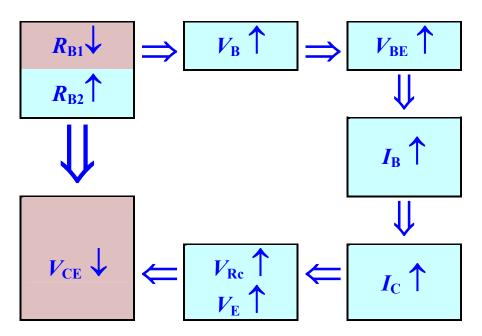


Fig.15 Trecho do estágio transistorizado e relação entre tensões na malha da base.



O processo de diminuição da tensão $V_{\rm CE}$ pela alteração dos resistores do divisor está representado diagramaticamente na **Fig.16**.

Fig.16 Diagrama representativo do processo de aumento da tensão $V_{\rm CE}$.

Para se obter uma redução na tensão $V_{\rm CE}$ do transistor, deve-se reduzir $R_{\rm B1}$ e aumentar $R_{\rm B2}$, como sugere o diagrama mostrado na **Fig.17**.

Fig.17 Diagrama representativo do processo de redução da tensão $V_{\rm CE}$.

FATOR DE ESTABILIDADE

Os circuitos polarizados por divisor de tensão exibem um fator de estabilidade *S* de bom a ótimo. A alta estabilidade térmica desse método de polarização deve-se, principalmente, à inclusão do resistor de emissor.

O fator de estabilidade para esse tipo de circuito pode ser calculado da expressão

$$S = \frac{R_{\rm E} + R_{\rm B}}{R_{\rm E} + \left(\frac{R_{\rm B}}{\beta + 1}\right)} \tag{16}$$

onde $R_{\rm B}$ é a resistência equivalente do divisor, dada por

$$R_{\rm B} = \frac{R_{\rm B1}R_{\rm B2}}{R_{\rm B1} + R_{\rm B2}} \tag{17}$$

O PROCESSO DE ESTABILIZAÇÃO TÉRMICA

As variações de temperatura influenciam a corrente de coletor do circuito, através da corrente de fuga $I_{\rm CBO}$. Essa afirmação é o resultado da relação entre correntes no transistor

$$I_{C} = \beta I_{B} + (\beta + 1)I_{CBO}$$

$$variável com$$

$$a temperatura$$

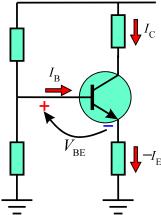
$$(18)$$

A componente de fuga da corrente de coletor não pode ser alterada externamente pois se deve a fenômenos internos ao transistor. A polarização por divisor de tensão atua, no entanto, na parcela de $I_{\rm C}$ que é dependente da corrente de base, fazendo que as variações na corrente de fuga sejam compensadas por variações opostas na corrente $I_{\rm B}$.

Utilizando a condição de alto ganho, i.e., $\beta>>1$, a **Eq.(18)** pode ser aproximada pela expressão

$$I_{C} = \beta(I_{B} + I_{CBO})$$

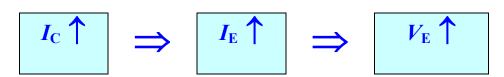
$$\uparrow \qquad \uparrow \qquad \uparrow$$

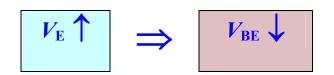

$$variações em I_{CBO} são compensadas$$

$$por variações opostas em I_{B}$$

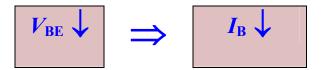
$$(19)$$

A correção automática sugerida na **Eq.(19)** pode ser facilmente compreendida analisandose o comportamento do circuito mostrado na **Fig.18**, quando sujeito a variações térmicas.

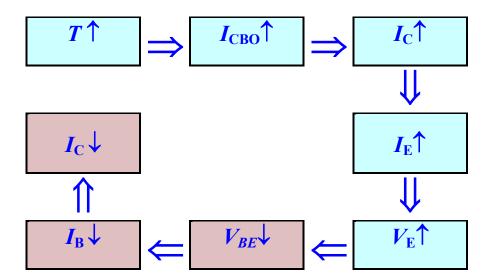

A partir do momento em que a temperatura aumenta, a corrente de coletor $I_{\rm C}$ tende a aumentar como consequência do aumento da corrente de fuga $I_{\rm CBO}$.


Fig.18 Circuito transistorizado com base polarizada por divisor de tensão.

A modificação produzida em $I_{\rm C}$ aumenta a corrente $I_{\rm E}$, visto que $I_{\rm E} \approx I_{\rm C}$, que por sua vez provoca um acréscimo na tensão $V_{\rm E} = R_{\rm E} I_{\rm E}$.



Da **Eq.(6)** verifica-se que a tensão $V_{\rm BE}$ diminui com o aumento da tensão $V_{\rm E}$, para um valor fixado da tensão $V_{\rm B}$ do divisor.


Série de Eletrônica

Com base na curva característica mostrada na **Fig.14**, essa diminuição na tensão $V_{\rm BE}$ provoca um decréscimo na corrente de base $I_{\rm B}$.

A redução em $I_{\rm B}$ provoca uma diminuição na corrente $I_{\rm C}$. Esse processo de compensação se repete até que a corrente de coletor atinja o valor estabelecido inicialmente. Dessa forma o circuito é praticamente insensível às variações de temperatura.

A **Fig.19** mostra a seqüência de eventos que compõem o processo de estabilidade térmica de um circuito transistorizado com polarização de base por divisor de tensão.

Fig.19 Sequência de eventos que provocam a estabilização térmica de um circuito transistorizado com polarização de base por divisor de tensão.

Apêndice

QUESTIONÁRIO

- 1. Quais são os elementos básicos que compõem um circuito transistorizado com base polarizada por divisor de tensão?
- 2. Qual a finalidade do divisor de tensão nesses tipos de circuito?
- 3. Qual a finalidade do resistor $R_{\rm E}$ nesses circuitos?
- 4. Repita o Exemplo 1 para o caso $I_C = 6$ mA.
- 5. Na análise de um circuito transistorizado polarizado por divisor de tensão:
 - (a) quais são os parâmetros de entrada?
 - (b) quais são os parâmetros da malha do coletor?
 - (c) quais são os parâmetros de saída?
- 6. Qual a principal característica térmica de um circuito transistorizado polarizado por divisor de tensão?
- 7. Calcule o fator de estabilidade térmica de um circuito transistorizado polarizado por divisor de tensão com os seguintes parâmetros: $R_{\rm E} = 100~\Omega$, $R_{\rm B1} = 8.5~{\rm k}\Omega$, $R_{\rm B2} = 1.5~{\rm k}\Omega$, $\beta = 100$.

BIBLIOGRAFIA

CIPELLI, Antônio Marco Vicari & SANDRINI, Valdir João. <u>Teoria do desenvolvimento de Projetos de Circuitos Eletrônicos</u>. 7.ed. São Paulo, Érica, 1983. 580p.

MILLMAN, Jacob & HALKIAS, Christos C. <u>Eletrônica:</u> Dispositivos e circuitos. Trad. Elédio José Robalinho e Paulo Elyot Meirelles Villela. São Paulo, Mc Graw Hill do Brasil. 1981. il. v.2

SENAI/ Departamento Nacional. <u>Reparador de circuitos eletrônicos</u>; eletrônica básica II. Rio de Janeiro, Divisão de Ensino e Treinamento, c 1979. (Coleção Básica Senai, Módulo 1).